Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot liquids release potentially harmful chemicals in polycarbonate plastic bottles

31.01.2008
When it comes to Bisphenol A (BPA) exposure from polycarbonate plastic bottles, it’s not whether the container is new or old but the liquid’s temperature that has the most impact on how much BPA is released, according to University of Cincinnati (UC) scientists.

Scott Belcher, PhD, and his team found when the same new and used polycarbonate drinking bottles were exposed to boiling hot water, BPA, an environmental estrogen, was released 55 times more rapidly than before exposure to hot water.

“Previous studies have shown that if you repeatedly scrub, dish-wash and boil polycarbonate baby bottles, they release BPA. That tells us that BPA can migrate from various polycarbonate plastics,” explains Belcher, UC associate professor of pharmacology and cell biophysics and corresponding study author. “But we wanted to know if ‘normal’ use caused increased release from something that we all use, and to identify what was the most important factor that impacts release.”

“Inspired by questions from the climbing community, we went directly to tests based on how consumers use these plastic water bottles and showed that the only big difference in exposure levels revolved around liquid temperature: Bottles used for up to nine years released the same amount of BPA as new bottles.”

... more about:
»BPA »Belcher »Endocrine »harmful »plastic »polycarbonate

The UC team reports its findings in the Jan. 30, 2008 issue of the journal Toxicology Letters.

BPA is one of many man-made chemicals classified as endocrine disruptors, which alter the function of the endocrine system by mimicking the role of the body’s natural hormones. Hormones are secreted through endocrine glands and serve different functions throughout the body.

The chemical—which is widely used in products such as reusable water bottles, food can linings, water pipes and dental sealants—has been shown to affect reproduction and brain development in animal studies.

“There is a large body of scientific evidence demonstrating the harmful effects of very small amounts of BPA in laboratory and animal studies, but little clinical evidence related to humans,” explains Belcher. “There is a very strong suspicion in the scientific community, however, that this chemical has harmful effects on humans.”

Belcher’s team analyzed used polycarbonate water bottles from a local climbing gym and purchased new bottles of the same brand from an outdoor retail supplier.

All bottles were subjected to seven days of testing designed to simulate normal usage during backpacking, mountaineering and other outdoor adventure activities.

The UC researchers found that the amount of BPA released from new and used polycarbonate drinking bottles was the same—both in quantity and speed of release—into cool or temperate water.

However, drastically higher levels of BPA were released once the bottles were briefly exposed to boiling water.

“Compared to the rate of release from the same bottle, the speed of release was 15 to 55 times faster,” explains Belcher.

Prior to boiling water exposure, the rate of release from individual bottles ranged from 0.2 to 0.8 nanograms per hour. After exposure, rates increased to 8 to 32 nanograms per hour.

Belcher stresses that it is still unclear what level of BPA is harmful to humans. He urges consumers to think about how cumulative environmental exposures might harm their health.

“BPA is just one of many estrogen-like chemicals people are exposed to, and scientists are still trying to figure out how these endocrine disruptors—including natural phyto-estrogens from soy which are often considered healthy—collectively impact human health,” he says. “But a growing body of scientific evidence suggests it might be at the cost of your health.”

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: BPA Belcher Endocrine harmful plastic polycarbonate

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>