Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery made easier with powerful new networking technique

31.01.2008
The identification of disease-causing genes will be much easier and faster using a powerful new gene-networking model developed by researchers at The University of Texas at Austin.

Edward Marcotte and his colleague, postdoctoral researcher Insuk Lee, used the gene network technique to identify new genes that regulate life span and are involved in tumor development in the nematode worm.

In collaboration with Andrew Fraser’s group at The Wellcome Trust Sanger Institute, the researchers manipulated the newly found genes and were able to extend the lives of the worms by 55 percent and reverse the onset of tumors.

Marcotte hopes to extend the technique to identifying genes for disease and other disorders in humans. The human genome has been sequenced, but very little is known about what more than half of about 20,000 genes do.

... more about:
»Disease »Marcotte »technique

“This is a big step forward in the rational discovery of disease genes,” says Marcotte, a professor in the Institute for Cellular and Molecular Biology. “We can use this gene modeling technique to predict the function of new genes and then run experiments to confirm the findings.

“The process could greatly improve our ability to pinpoint specific genes involved in disease and aid in the development of drugs.”

Marcotte’s research was published January 27 online in Nature Genetics.

Gene networks are models of the connections between all of the genes within an organism, and Marcotte uses them like an online social network. He learns what new genes do by the genes’ connections to others in the network, much like people use online social networking systems to connect with friends and others with similar interests.

“You can think of it like six degrees of separation or a Facebook.com for genes,” says Marcotte. “If you know of a few genes and what they do, their ‘friends’ probably do something similar, and we can find these through the network.”

To build the worm gene network, Lee, a postdoctoral researcher in Marcotte’s group, synthesized data from about 20 million experiments from around the world. A visual representation of the network—which has the appeal of a work of modern art—is a complex web of lines interconnecting the worm’s 16,000 genes.

In one set of studies, the researchers looked for genes that cause tumors in the worms. The tumors are a model for human eye cancer (retinoblastoma) and appear as growths along the length of the worms’ bodies.

By searching the network, they found about 170 new genes that could have been involved in the development of tumors.

Then Marcotte’s colleagues at the Wellcome Trust Sanger Institute in Cambridge in the United Kingdom tested the function of the new genes by inactivating them with a technique known as RNAi. The technique mimics the action of a potential drug by knocking out the function of individual genes.

They found that inactivating 16 of the 170 genes reversed tumors in the worms.

In similar studies, the researchers identified genes that regulate life span in the worms and manipulated the genes to extend the worms’ lives by 55 percent.

“This sets the stage for making equivalent networks for the mouse and human genome,” Marcotte says. “Then we hope we can discover genes that are causal for disease conditions in humans.”

Edward Marcotte | EurekAlert!
Further information:
http://www.icmb.utexas.edu

Further reports about: Disease Marcotte technique

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>