Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA (driver of nicotine addiction)

31.01.2008
DNA markers of cigarette smoking

Cigarette smoking is the largest preventable source of death and disability in the USA, contributing to ~ 400,000 deaths annually. Despite widespread knowledge of the health dangers, ~ 1 in 8 American adults is a habitual heavy smoker.

For several decades, scientists have known that most of the risk for habitual heavy smoking (smoking a pack each day) is largely influenced by genetics. This conclusion comes from the study of identical and fraternal twins from Scandinavia, North America, Australia and (more recently) China. It has been estimated that ~ 2/3 of the risk to become a heavy habitual smoker is genetic. This does not imply that this genetic risk is due to a single gene. It is known that many genes are involved, each one contributing a small amount of risk.

Finding the individual genes is a considerable challenge, but worth the effort, because it is hoped that the genes conveying risk for heavy smoking could be used to develop new medicines to help people quit. The development of new medicines to help people quit is particularly important, because the existing medications, including nicotine replacement (‘the patch’ or gum), bupropion and varenicline are effective in the short-term (several months) for a minority of heavy smokers.

... more about:
»Alpha »DNA »Genetic »addiction »medicines »nicotine »nicotinic

This paper describes the results of a genetic study of 14,000 people, from the USA and Europe, whose smoking histories were known. DNA samples from ~ 6000 people were analyzed at ~ 500,000 known variations in the human genome to determine whether any of these variations predicted cigarettes per day during the period of heaviest smoking for these individuals. The results implicated variations in two genes, both producing brain proteins to which nicotine binds in generating its addicting effects. These two proteins (are their genes) are termed the alpha 3 and alpha 5 nicotinic receptor subunits, so-called because they form (with other nicotinic receptor subunits) binding sites for nicotine on certain brain cells which are known to be activated during the process of addiction.

A second population of ~ 8000 people (whose smoking histories were known) was analyzed in a similar manner, the result again suggesting that variations in these two genes increased risk for heavy smoking. Taken together, these two studies provide convincing proof that variations in the alpha 3 and alpha 5 nicotinic receptor subunit genes play a significant role in risk for nicotine addiction. A previously published paper, using similar methods, also supports this conclusion.

These results suggest two important research activities. First, and foremost, the alpha 3 and alpha 5 nicotinic receptor subunits will be made targets for new smoking cessation medication development programs by pharmaceutical companies. Second, the implicated DNA variants can be used to determine whether they predict ability to quit using the one of the currently available smoking cessation medicines. This “personalized medicine” approach might allow for more efficient and productive use of those medicines, until improved ones can be created.

Citation source: Molecular Psychiatry advance online publication 29 JANUARY 2008
Alpha-5/Alpha-3 Nicotinic Receptor Subunit Alleles Increase Risk for Heavy Smoking
Authors:
Wade Berrettini, MD, PhD (1,2), Jean Yuan, PhD (2), Federica Tozzi, MD (2),Kijoung Song, PhD (2), Clyde Francks, PhD (2), Howard Chilcoat, ScD (3), Dawn Waterworth, PhD (2), Pierandrea Muglia, MD (2, 4), Vincent Mooser, MD (2)

Wade Berrettini | EurekAlert!
Further information:
http://www.upenn.edu
http://www.nature.com/mp

Further reports about: Alpha DNA Genetic addiction medicines nicotine nicotinic

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>