Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Telepathic' genes recognize similarities in each other

28.01.2008
Genes have the ability to recognise similarities in each other from a distance, without any proteins or other biological molecules aiding the process, according to new research published this week in the Journal of Physical Chemistry B. This discovery could explain how similar genes find each other and group together in order to perform key processes involved in the evolution of species.

This new study shows that genes – which are parts of double-stranded DNA with a double-helix structure containing a pattern of chemical bases - can recognise other genes with a similar pattern of chemical bases.

This ability to seek each other out could be the key to how genes identify one another and align with each other in order to begin the process of ‘homologous recombination’ – whereby two double-helix DNA molecules come together, break open, swap a section of genetic information, and then close themselves up again.

Recombination is an important process which plays a key role in evolution and natural selection, and is also central to the body’s ability to repair damaged DNA. Before now, scientists have not known exactly how suitable pairs of genes find each other in order for this process to begin.

... more about:
»DNA »DNA molecules »Molecules »Result »recombination

The authors of the new study carried out a series of experiments in order to test the theory, first developed in 2001 by two members of this team, that long pieces of identical double-stranded DNA could identify each other merely as a result of complementary patterns of electrical charges which they both carry. They wanted to verify that this could indeed occur without physical contact between the two molecules, or the facilitating presence of proteins.

Previous studies have suggested that proteins are involved in the recognition process when it occurs between short strands of DNA which only have about 10 pairs of chemical bases. This new research shows that much longer strands of DNA with hundreds of pairs of chemical bases seem able to recognise each other as a whole without protein involvement. According to the theory, this recognition mechanism is stronger the longer the genes are.

The researchers observed the behaviour of fluorescently tagged DNA molecules in a pure solution. They found that DNA molecules with identical patterns of chemical bases were approximately twice as likely to gather together than DNA molecules with different sequences.

Professor Alexei Kornyshev from Imperial College London, one of the study’s authors, explains the significance of the team’s results: “Seeing these identical DNA molecules seeking each other out in a crowd, without any external help, is very exciting indeed. This could provide a driving force for similar genes to begin the complex process of recombination without the help of proteins or other biological factors. Our team’s experimental results seem to support these expectations.”

Understanding the precise mechanism of the primary recognition stage of genetic recombination may shed light on how to avoid or minimise recombination errors in evolution, natural selection and DNA repair. This is important because such errors are believed to cause a number of genetically determined diseases including cancers and some forms of Alzheimer’s, as well as contributing to ageing. Understanding this mechanism is also essential for refining precise artificial recombination techniques for biotechnologies and gene therapies of the future.

The team is now working on a set of further experiments to determine exactly how these interactions work, including the predicted length dependence. In addition, further studies are needed to ascertain whether this interaction, discovered in a test tube, occurs in the highly complex environment of a living cell.

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

Further reports about: DNA DNA molecules Molecules Result recombination

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>