Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A major step toward a more targeted treatment for auto-immune diseases?

28.01.2008
More and more people in Western society are suffering from auto-immune diseases. Discovering the cause of these chronic inflammations is a first important step in the search for targeted medicines.

VIB researchers connected to Ghent University and the Katholieke Universiteit Leuven joined forces and have elucidated the function of MALT1, a key player in controlling inflammatory reactions. They are the first to show that MALT1 is able to cleave the A20 protein, which inhibits inflammation. Scientists hope that by counteracting MALT1 they will be able to restore the body’s natural inhibition of inflammation and thus provide an alternative for treatments that tax the immune system. This would represent a profound improvement over current medicines. Their research will be published in the authoritative journal Nature Immunology.

Raging out of control?

Inflammations are our normal protective reactions against infections - they arise to help remove pathogenic organisms from our bodies. This immune response is very precise and is only possible after a complex cascade of signals. Sometimes something goes wrong in this chain of reactions, and the inflammation process becomes uncontrolled or even triggers undesired immune responses against the body’s own substances. This can lead to auto-immune diseases such as rheumatism, Crohn’s disease, psoriasis, and multiple sclerosis, and, in some cases, to cancer. Reining in the runaway immune system is the most obvious remedy for these kinds of diseases. But the major challenge is to do this in such a way that the immune system continues to perform its protective role. And this requires a thorough understanding of the entire process.

Proteins with a crucial function

It has long been known that the MALT1 protein plays an important role in initiating inflammation reactions. That’s why VIB researchers Beatrice Coornaert (UGent), Rudi Beyaert (UGent), Thijs Baens (K.U.Leuven) and Peter Marynen (K.U.Leuven) set out to discover exactly what its particular role is. They have now succeeded in showing that MALT1 cuts the A20 protein into pieces. They are in fact the first to find that MALT1 is a protease (a protein that cleaves other proteins) and that A20 is the protein that is cut. In normal circumstances, A20 inhibits inflammatory reactions; and, by cleaving A20, MALT1 counteracts this inhibition, allowing the inflammation to progress freely. So, both proteins play very important parts in fine-tuning the intensity of inflammatory reactions.

Prospects for new treatments

Through their research, the VIB scientists are shedding light on an important part of the process that controls our immune response. Their findings offer possibilities for the development of new medicines that counteract MALT1 and thereby restore the natural ‘brake’ on the inflammation process. In this way, scientists hope to be able to provide an alternative for treatments that undermine the immune system. In addition, they hope to be able to apply this knowledge to the typical immunoreactions toward organ transplants or the treatment of cancer that is caused by genetic defects in MALT1, such as MALT lymphoma.

Joining forces

This research clearly shows the added value of combining expertise from different research groups. These important discoveries are the result of a close collaboration between researchers from the VIB Department for Molecular Biomedical Research (UGent) and the VIB Department of Molecular and Developmental Genetics (K.U.Leuven).

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: A20 Leuven Malt1 Treatment auto-immune immune system inflammation reactions

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>