Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A major step toward a more targeted treatment for auto-immune diseases?

28.01.2008
More and more people in Western society are suffering from auto-immune diseases. Discovering the cause of these chronic inflammations is a first important step in the search for targeted medicines.

VIB researchers connected to Ghent University and the Katholieke Universiteit Leuven joined forces and have elucidated the function of MALT1, a key player in controlling inflammatory reactions. They are the first to show that MALT1 is able to cleave the A20 protein, which inhibits inflammation. Scientists hope that by counteracting MALT1 they will be able to restore the body’s natural inhibition of inflammation and thus provide an alternative for treatments that tax the immune system. This would represent a profound improvement over current medicines. Their research will be published in the authoritative journal Nature Immunology.

Raging out of control?

Inflammations are our normal protective reactions against infections - they arise to help remove pathogenic organisms from our bodies. This immune response is very precise and is only possible after a complex cascade of signals. Sometimes something goes wrong in this chain of reactions, and the inflammation process becomes uncontrolled or even triggers undesired immune responses against the body’s own substances. This can lead to auto-immune diseases such as rheumatism, Crohn’s disease, psoriasis, and multiple sclerosis, and, in some cases, to cancer. Reining in the runaway immune system is the most obvious remedy for these kinds of diseases. But the major challenge is to do this in such a way that the immune system continues to perform its protective role. And this requires a thorough understanding of the entire process.

Proteins with a crucial function

It has long been known that the MALT1 protein plays an important role in initiating inflammation reactions. That’s why VIB researchers Beatrice Coornaert (UGent), Rudi Beyaert (UGent), Thijs Baens (K.U.Leuven) and Peter Marynen (K.U.Leuven) set out to discover exactly what its particular role is. They have now succeeded in showing that MALT1 cuts the A20 protein into pieces. They are in fact the first to find that MALT1 is a protease (a protein that cleaves other proteins) and that A20 is the protein that is cut. In normal circumstances, A20 inhibits inflammatory reactions; and, by cleaving A20, MALT1 counteracts this inhibition, allowing the inflammation to progress freely. So, both proteins play very important parts in fine-tuning the intensity of inflammatory reactions.

Prospects for new treatments

Through their research, the VIB scientists are shedding light on an important part of the process that controls our immune response. Their findings offer possibilities for the development of new medicines that counteract MALT1 and thereby restore the natural ‘brake’ on the inflammation process. In this way, scientists hope to be able to provide an alternative for treatments that undermine the immune system. In addition, they hope to be able to apply this knowledge to the typical immunoreactions toward organ transplants or the treatment of cancer that is caused by genetic defects in MALT1, such as MALT lymphoma.

Joining forces

This research clearly shows the added value of combining expertise from different research groups. These important discoveries are the result of a close collaboration between researchers from the VIB Department for Molecular Biomedical Research (UGent) and the VIB Department of Molecular and Developmental Genetics (K.U.Leuven).

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: A20 Leuven Malt1 Treatment auto-immune immune system inflammation reactions

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>