Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows that bacteria can communicate through the air

27.05.2002


This month, Journal of Applied Microbiology publishes a ground-breaking study demonstrating that bacteria which are physically separated can transmit information through the air. It is well documented that bacteria can exchange messages by releasing substances into a surrounding liquid culture medium, but this new study is the first to demonstrate signalling between physically separated bacterial cells.



Professor Alan Parsons and Dr Richard Heal of QinetiQ ltd, have shown that physically separated colonies of bacteria can transmit signals conferring resistance to commonly used antibiotics. The discovery is thought to have direct application against the growing problem of the resistance of bacteria to antibiotics - in particular in preventing the growth of biofilms, which often cause infection associated with surgical implants.

Professor Parsons and Dr Heal conducted their experiments using a Petri dish divided into two compartments, connected by a five-millimetre air gap between the top of the wall and the lid. In one compartment they placed drops of the bacterium Escherichia coli, together with the antibiotics. When the other compartment was empty, the bacteria were killed. However, if thriving colonies of E.coli were placed in the other compartment, the first colony of bacteria not only survived, but also multiplied. Yet, if the gap between the compartments was sealed, the bacteria in the first compartment died. Professor Parsons and Dr Heal concluded that the bacteria must have been responding to some kind of airborne signal from the adjacent culture probably in the form of a volatile chemical.


Further research is still required to identify the exact nature of the signalling mechanism, and to establish whether blocking of the signalling mechanism might prove a valuable weapon in combatting the problem of bacterial antibiotic resistance.

Anna Van Opstal | alphagalileo

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>