Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ant parasite turns host into ripe red berry, biologists discover

A newly discovered parasite so dramatically transforms its host, an ant, that the ant comes to resemble a juicy red berry, ripe for picking, according to a report accepted for publication in The American Naturalist. This is the first example of fruit mimicry caused by a parasite, the co-authors say.

Presumably, the dramatic change in appearance and behavior tricks birds into eating infected ants - parasites and all - so that the bird can spread the parasite in its feces. The fruit-eating birds' droppings, which are mostly seeds and insect parts, are gathered by other ants who then feed and unwittingly infect their young.

This bizarre lifecycle of a parasitic nematode, or roundworm, plays out in the high canopy of tropical forests ranging from Central America to the lowland Amazon, according to Robert Dudley, a professor of integrative biology at the University of California, Berkeley.

"It's just crazy that something as dumb as a nematode can manipulate its host's exterior morphology and behavior in ways sufficient to convince a clever bird to facilitate transmission of the nematode," Dudley said.

Comparison of normal worker ants (top) and ants infected with a nematode.

"It's phenomenal that these nematodes actually turn the ants bright red, and that they look so much like the fruits in the forest canopy," said co-author Stephen P. Yanoviak, an insect ecologist and assistant professor of biology at the University of Arkansas at Little Rock, who noted that numerous tropical plants produce small red, orange and pink berries. "When you see them in the sunlight, it's remarkable."
... more about:
»Cephalotes »Kaspari »Yanoviak »abdomen »nematode »parasite

Dudley chanced upon the infected ants while he, Yanoviak and ant ecologist Michael E. Kaspari of the University of Oklahoma in Norman were studying the gliding ability of a species of ant, Cephalotes atratus, common in the tropical forest canopy. Three years ago, their team described the ant's ability to make mid-air maneuvers so that, if knocked off a branch, they can glide toward the tree trunk, grab hold and climb back up, avoiding the treacherous forest floor. Both Dudley and Kaspari are affiliated with the Smithsonian Tropical Research Institute in Panama. Yanoviak is also with the Florida Medical Entomology Laboratory in Vero Beach, Fla.

In May 2005, when searching for a colony of the ants in a downed tree on Panama's Barro Colorado Island, Dudley was puzzled to see some members of the colony with bright red abdomens - something he, Yanoviak and Kaspari had never before seen. Taking several of the ants back to the lab and opening them up, Yanoviak discovered that the red abdomen was full of hundreds of nematode eggs.

An infected ant's abdomen, or gaster, is sliced open to reveal hundreds of nematode eggs. A closeup of the eggs shows the worm coiled inside. Once consumed by ant larvae, the eggs hatch, the adults migrate to the larval ant's gaster, mate and produce more eggs. (Steve Yanoviak/University of Arkansas)

"Like other ant biologists, I initially thought this was another species of Cephalotes," said Kaspari. "Robert didn't think so, and we made a bet over beers. Then Steve opened one up under the scope and - wow! I lost the bet."

Because the red abdomen clearly mimicked in both size and color the many red berries that attract birds, the biologists quickly suspected that the nematode had found a unique way to guarantee its transmission from ant host to bird host. The researchers spent the next couple of years trying to prove their hypothesis.

Yanoviak first consulted the world's authority on the nematodes that parasitize insects: George Poinar Jr., a former UC Berkeley researcher now at Oregon State University in Corvallis. Poinar and Yanoviak describ the new species of tetradonematid nematode, Myrmeconema neotropicum, in a paper to appear in the February 2008 issue of the journal Systematic Parasitology.

They also discovered that infected ants with red abdomens had been recorded before, and that some specimens resided in museum collections labeled as a variety of Cephalotes.

Yanoviak collected thousands of normal and infected ants in both Panama and Peru, near the Peruvian rainforest city of Iquitos, and demonstrated that, typically, about 5 percent of worker ants in a colony are infected. Cephalotes colonies contain between a few hundred and several thousand ants.

Infected ants, normally black, develop a bright red abdomen, called a gaster, and tend to hold it in an elevated position, an alarm posture in ants. The ants also get sluggish, and the gaster is easily broken off, making it easy for birds to pluck. Dudley noted that birds usually don't eat ants, especially C. atratus, as the ants are heavily armored and defended by bad-tasting chemical defenses.

Yanoviak and Poinar reconstructed the life cycle of the nematode, though Yanoviak admits that they never saw a bird eat an ant's red gaster.

"Nevertheless, I definitely saw birds come in and seemingly stop and take a second look at those ants before flying off, probably because the ants were moving," Yanoviak said. "So I really suspect that these little bananaquits or tyrannids (flycatchers) are coming in and taking the ants, thinking they are fruit."

Birds apparently are merely a way to spread the parasite's eggs more broadly, since the eggs pass directly through into the feces. Ants become infected when they feed to ant larvae the bird feces containing parasite eggs. The nematodes hatch and migrate to the gaster of the ant pupae, where they mate. After the pupae become adults, the adults tend the brood while the nematode females incubate their eggs inside them, stunting the ant's growth somewhat.

Then, as the nematode eggs mature, the ants' gasters turn red and the ants start foraging outside the nest, setting the scene for fruit-eating birds to be duped into eating an ant they would normally avoid.

"This is a really great example of the kinds of complex host-parasite interactions that can co-evolve, and also of the role of serendipity in tropical biology," Dudley said.

The American Naturalist article will appear in print sometime this spring. The research was supported in part by the National Geographic Society, the Amazon Conservation Association and the BBC Natural History Unit.

Robert Sanders | EurekAlert!
Further information:

Further reports about: Cephalotes Kaspari Yanoviak abdomen nematode parasite

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>