Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify A Means Of Controlling A Parasite That Kills And Eats Human Cells

18.01.2008
Researchers from the University of Virginia and the University of Vermont have discovered a means of inhibiting one of the world’s most voracious parasites. The study, published Friday, January 18 in PLoS Pathogens, targets a protein which aids the parasite in ingestion of immune cell corpses.

Entamoeba histolytica, which causes inflammation of the colon (colitis), plays dirty. It attacks and kills human immune cells in seconds. Then the parasite hides the evidence by eating the cells’ corpses. While doing so, it kills nearly 100,000 people each year.

The research team, led by Dr. William Petri, hypothesized that identifying molecules involved in the corpse ingestion might provide insight into how the amebae cause colitis in children.

The team identified a particular protein on the surface of the ameba called a kinase, PATMK. Using a special technique called RNA interference to inhibit the actions of this kinase, they prevented the ameba from eating dead cells.

... more about:
»ameba »parasite »prevent

“By blocking this kinase, we have for the first time prevented the ameba from colonizing and invading the gut,” said Dr. Petri. “This means that we are a step closer to preventing this disease, which wreaks havoc among children worldwide.”

“Infection and further invasion into the gut require the clearance of dead cells in order to prevent immune recognition of the damaged tissue,” says fellow researcher Douglas Boettner. “PATMK is the first individual member of a large family of proteins to be assigned a function related to the clearance of dying tissue during pathogenesis.”

This protein may be a pivotal vaccination target because these preliminary studies show that alterations in PATMK function reduces progression of amoebiasis in mice, Boettner added. “A vaccine that ultimately would prevent this amoeba from clearing the damaged host may attract helpful immune cells which may recognize and eliminate this infection.”

On a global basis, amebiasis affects approximately 50 million people each year, causing diarrhea, malnutrition and nearly 100,000 deaths.

This work shows how infection is dependent upon the ameba’s consumption of dead cells. By identifying the molecule that controls eating, scientists are one step closer to the ultimate goal of preventing disease caused by this parasite.

Andrew Hyde | alfa
Further information:
http://pathogens.plos.org

Further reports about: ameba parasite prevent

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>