Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells Get Sprayed

17.01.2008
Water droplets produced by electrospray render cells permeable to external DNA

Genetically engineered products have become indispensable.

For example, genetically modified bacteria produce human insulin. In future, gene therapy should make it possible to introduce genes into the cells of a diseased organism so that they can address deficiencies to compensate for malfunctions in the body. In order for this to work, foreign (or synthetic) DNA must be introduced into host cells, which is not exactly a trivial task.

Japanese researchers have now developed a method which could represent a true alternative to conventional processes. As described in the journal Angewandte Chemie, the cells are “bombarded” with water droplets produced and accelerated by electrospray.

... more about:
»DNA »droplets »method

There are several methods to transfer DNA into a host cell. In the simplest case the foreign DNA forces its way into the cell through a cell membrane that has been made porous, through treatment with electrical current or UV lasers, for example. Viruses and liposomes can be used as genetic transporters and the genetic material can be injected or shot into the cell with a “particle gun”. These methods all have the disadvantage of either severely damaging delicate cells or of being markedly expensive and complicated.

A team at the Saitama University led by Takafumi Sakai, in cooperation with Kazuto Ikemoto (Mitsubishi Gas Chemical Company), has now developed a methodology that could provide an alternative: They “bombard” the cells with tiny electrically charged water droplets. The droplets tear tiny holes in the cell membranes, through which external DNA molecules can enter. After about one minute, the holes have closed back up and even delicate cells survive the procedure undamaged.

This method is based on a technique called electrospray, which has long been used with success, particularly in mass spectrometry. In this process, the tip of an extremely fine steel capillary is put under a high voltage. A highly charged drop of water exits the capillary and is atomized into many micro- or nanoscopic droplets. These charged microdroplets are strongly accelerated in an electrical field—toward the plate holding the cell culture.

The advantage of this new method: It is suitable for a large variety of cell types—mammalian cell cultures and bacteria, as well as living tissue, as was demonstrated with bird embryos. No cytotoxic reagents that could damage the cells are needed; only pure water or a cell-tolerated saline solution are used. An entire plate of cell cultures can be “sprayed” bit by bit, or a specific point on some tissue can be targeted. The equipment needed is simple, inexpensive, and portable.

Author: Takafumi Sakai, Saitama University (Japan), mailto:tsakai@mail.saitama-u.ac.jp

Title: DNA Introduction into Living Cells by Water Droplet Impact with an Electrospray Process

Angewandte Chemie International Edition, doi: 10.1002/anie.200704429

Takafumi Sakai | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: DNA droplets method

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>