Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway provides more clues about BRCA1 role in breast cancer

17.01.2008
A breast cancer gene's newly discovered role in repairing damaged DNA may help explain why women who inherit a mutated copy of the gene are at increased risk for developing both breast and ovarian cancer.

The discovery also could lead to more effective therapies for women with and without mutated copies of the BRCA1 gene, according to a study led by Duke University Medical Center researchers.

“Since it was discovered in 1994, BRCA1 and its role in preventing and causing cancer has been intensely studied, and our research represents an important piece of the puzzle,” said Craig Bennett, Ph.D., a researcher in Duke’s Department of Surgery and lead investigator on this study. “This study has identified an important mechanism by which BRCA1 comes into play when DNA -- the basis for all cell function -- is damaged. We have shown that this theory holds up not just in scientific models but in human breast cancer cells as well.”

The findings appear in the January 16, 2008 online edition of the journal PLoS ONE. The study was funded by the United States Department of Defense, the National Institutes of Health and the Italian Association for Research on Cancer.

... more about:
»BRCA1 »DNA »developing »mutated »pathway

The researchers first looked at yeast to demonstrate that a molecular pathway that is particularly susceptible to BRCA1 influence is also crucial to normal cell function.

“The BRCA1 pathway we discovered is directly involved with the critical process of transcription, in which RNA acts as a messenger between DNA and the making of proteins," Bennett said.

DNA damage is a normal result of exposure to environmental agents, such as carcinogens, and the response to this damage can be influenced by other normal human processes such as aging and hormonal changes, Bennett said. It's what happens to RNA transcription after damage occurs in DNA that is BRCA1-dependent.

“We found that BRCA1 acts together with transcription to detect DNA damage and to signal the cell to repair itself,” Bennett said. “When BRCA1 does not function correctly, as when it is mutated, DNA damage remains un-repaired and cancer can occur.”

The researchers applied their findings in yeast to human breast cancer cells, with the same results.

“The fact that we were able to duplicate our results in human breast cancer cells is hugely important,” said Bennett. “Yeast is a wonderful model organism that has been used to make significant discoveries in many areas of science and medicine, including Parkinson’s and Alzheimer’s diseases, but the ability to replicate results in human cells is key.”

Bennett said the discovery will lay the groundwork for further investigation of the role of BRCA1 and possibly lead to new therapeutic strategies targeting the genes or protein products within this pathway.

Women who have inherited a BRCA1 mutation have up to an 80 percent risk of developing breast cancer in their lifetime, and they are also at risk for developing the disease at much younger ages than women without the mutation, according to the American Cancer Society. Their risk for developing ovarian cancer is about 40 to 50 percent, compared to just over one percent for the general population. The mutation is most often found in women with Eastern European Jewish origin, but can be found in women of any race.

“Someday we hope that this research will lead to the development of more effective ways to treat both the women who have inherited a mutated copy of the BRCA1 gene and those who have not,” Bennett said.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: BRCA1 DNA developing mutated pathway

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>