Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New pathway provides more clues about BRCA1 role in breast cancer

A breast cancer gene's newly discovered role in repairing damaged DNA may help explain why women who inherit a mutated copy of the gene are at increased risk for developing both breast and ovarian cancer.

The discovery also could lead to more effective therapies for women with and without mutated copies of the BRCA1 gene, according to a study led by Duke University Medical Center researchers.

“Since it was discovered in 1994, BRCA1 and its role in preventing and causing cancer has been intensely studied, and our research represents an important piece of the puzzle,” said Craig Bennett, Ph.D., a researcher in Duke’s Department of Surgery and lead investigator on this study. “This study has identified an important mechanism by which BRCA1 comes into play when DNA -- the basis for all cell function -- is damaged. We have shown that this theory holds up not just in scientific models but in human breast cancer cells as well.”

The findings appear in the January 16, 2008 online edition of the journal PLoS ONE. The study was funded by the United States Department of Defense, the National Institutes of Health and the Italian Association for Research on Cancer.

... more about:
»BRCA1 »DNA »developing »mutated »pathway

The researchers first looked at yeast to demonstrate that a molecular pathway that is particularly susceptible to BRCA1 influence is also crucial to normal cell function.

“The BRCA1 pathway we discovered is directly involved with the critical process of transcription, in which RNA acts as a messenger between DNA and the making of proteins," Bennett said.

DNA damage is a normal result of exposure to environmental agents, such as carcinogens, and the response to this damage can be influenced by other normal human processes such as aging and hormonal changes, Bennett said. It's what happens to RNA transcription after damage occurs in DNA that is BRCA1-dependent.

“We found that BRCA1 acts together with transcription to detect DNA damage and to signal the cell to repair itself,” Bennett said. “When BRCA1 does not function correctly, as when it is mutated, DNA damage remains un-repaired and cancer can occur.”

The researchers applied their findings in yeast to human breast cancer cells, with the same results.

“The fact that we were able to duplicate our results in human breast cancer cells is hugely important,” said Bennett. “Yeast is a wonderful model organism that has been used to make significant discoveries in many areas of science and medicine, including Parkinson’s and Alzheimer’s diseases, but the ability to replicate results in human cells is key.”

Bennett said the discovery will lay the groundwork for further investigation of the role of BRCA1 and possibly lead to new therapeutic strategies targeting the genes or protein products within this pathway.

Women who have inherited a BRCA1 mutation have up to an 80 percent risk of developing breast cancer in their lifetime, and they are also at risk for developing the disease at much younger ages than women without the mutation, according to the American Cancer Society. Their risk for developing ovarian cancer is about 40 to 50 percent, compared to just over one percent for the general population. The mutation is most often found in women with Eastern European Jewish origin, but can be found in women of any race.

“Someday we hope that this research will lead to the development of more effective ways to treat both the women who have inherited a mutated copy of the BRCA1 gene and those who have not,” Bennett said.

Lauren Shaftel Williams | EurekAlert!
Further information:

Further reports about: BRCA1 DNA developing mutated pathway

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>