Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigmentation in butterfly wings

17.01.2008
Nowhere in nature is there so much beautiful colour as on the wings of butterflies. Scientists, however, are still baffled about exactly how these colours are created. Marco Giraldo has been examining the structure of the surface of the wings of the cabbage white and other butterflies. Among the things he has discovered is why European cabbage whites are rebuffed more often than Japanese ones. Giraldo will be awarded a PhD by the University of Groningen on 25 January 2008.

The colours on butterfly wings are used as an advertisement. The patterns on the wings enable butterflies to recognize their own species at a distance and differentiate between males and females – rather handy when you’re hunting for a partner. Just like a pointillist painting, the surface of the wing is constructed of a huge collection of coloured dots, called scales, each about 50 x 250 micrometers in size.

However, scientists don’t yet know very much about how the colour on the wings is formed. What they do know is that the colours are created in two different ways: via pigments and via nanostructures on the scales, which ensure that light is distributed in ways that are sometimes spectacular. These so-called structure colours can clearly be seen on the morpho butterflies of the South American rainforests.

Cabbage white
Marco Giraldo examined the structure and the pigments of the wings of the cabbage white and other Whites from the Pieridae family. The physicist chose the Whites because they have relatively simple pigmentation. By comparing the scales of various sorts under an electron microscope, he discovered how the colouration of Whites is caused. Giraldo is the first to clarify how the colour of these butterflies is influenced by the nanostructural characteristics.
Scale structure
Although the spatial structure of a scale depends on the type of butterfly, there are a number of general characteristics: A scale consists of two layers, linked by pillars. The undersurface is virtually smooth and without structure, but the upper surface is formed by a large number of elongated, parallel ridges, about one to two micrometers from each other. The colour is determined by the dispersal of light by the scale structures and by the absorption of light by any pigments present. The pigments of the cabbage white, for example, absorb ultraviolet light and the brimstone blue light. At the same time they also scatter white or yellow light respectively.
Effective
Giraldo also discovered that the wings of Whites are constructed in a surprisingly effective way. Both sides of the wings have two layers of overlapping scales that reflect light. The more scales there are, the more light is reflected. This light reflection is very important as butterflies want to be seen. Giraldo discovered that these two layers form an optimal construction: with more than two layers the reflection may be improved, but the wing would become disproportionately heavy.
Japanese males
Giraldo has also discovered why Japanese male cabbage whites are better at recognizing females than European cabbage whites, who still make mistakes in this area. This is because the wings of Japanese male and female cabbage whites differ subtly, unlike those of their European relatives: the scales on the wings of Japanese female cabbage whites lack specific pigment grains, those that ensure that UV light is absorbed. Males do have these pigment grains, as do both sexes of the European cabbage whites. This difference makes it easier for Japanese male cabbage whites, who unlike humans can see UV light, to differentiate between males and females.
Colour industry
New colour methods can be developed using the knowledge derived from Giraldo’s research. It may be possible to apply the nanostructures observed in butterflies to create impressive optic effects in paint, varnish, cosmetics, packaging materials and clothes. Industry is thus following butterfly wing research with great interest.

Communication Office | alfa
Further information:
http://www.rug.nl/corporate/nieuws/archief/archief2008/persberichten/004_08

Further reports about: Pigment Whites layers scale structure

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>