Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pigmentation in butterfly wings

17.01.2008
Nowhere in nature is there so much beautiful colour as on the wings of butterflies. Scientists, however, are still baffled about exactly how these colours are created. Marco Giraldo has been examining the structure of the surface of the wings of the cabbage white and other butterflies. Among the things he has discovered is why European cabbage whites are rebuffed more often than Japanese ones. Giraldo will be awarded a PhD by the University of Groningen on 25 January 2008.

The colours on butterfly wings are used as an advertisement. The patterns on the wings enable butterflies to recognize their own species at a distance and differentiate between males and females – rather handy when you’re hunting for a partner. Just like a pointillist painting, the surface of the wing is constructed of a huge collection of coloured dots, called scales, each about 50 x 250 micrometers in size.

However, scientists don’t yet know very much about how the colour on the wings is formed. What they do know is that the colours are created in two different ways: via pigments and via nanostructures on the scales, which ensure that light is distributed in ways that are sometimes spectacular. These so-called structure colours can clearly be seen on the morpho butterflies of the South American rainforests.

Cabbage white
Marco Giraldo examined the structure and the pigments of the wings of the cabbage white and other Whites from the Pieridae family. The physicist chose the Whites because they have relatively simple pigmentation. By comparing the scales of various sorts under an electron microscope, he discovered how the colouration of Whites is caused. Giraldo is the first to clarify how the colour of these butterflies is influenced by the nanostructural characteristics.
Scale structure
Although the spatial structure of a scale depends on the type of butterfly, there are a number of general characteristics: A scale consists of two layers, linked by pillars. The undersurface is virtually smooth and without structure, but the upper surface is formed by a large number of elongated, parallel ridges, about one to two micrometers from each other. The colour is determined by the dispersal of light by the scale structures and by the absorption of light by any pigments present. The pigments of the cabbage white, for example, absorb ultraviolet light and the brimstone blue light. At the same time they also scatter white or yellow light respectively.
Effective
Giraldo also discovered that the wings of Whites are constructed in a surprisingly effective way. Both sides of the wings have two layers of overlapping scales that reflect light. The more scales there are, the more light is reflected. This light reflection is very important as butterflies want to be seen. Giraldo discovered that these two layers form an optimal construction: with more than two layers the reflection may be improved, but the wing would become disproportionately heavy.
Japanese males
Giraldo has also discovered why Japanese male cabbage whites are better at recognizing females than European cabbage whites, who still make mistakes in this area. This is because the wings of Japanese male and female cabbage whites differ subtly, unlike those of their European relatives: the scales on the wings of Japanese female cabbage whites lack specific pigment grains, those that ensure that UV light is absorbed. Males do have these pigment grains, as do both sexes of the European cabbage whites. This difference makes it easier for Japanese male cabbage whites, who unlike humans can see UV light, to differentiate between males and females.
Colour industry
New colour methods can be developed using the knowledge derived from Giraldo’s research. It may be possible to apply the nanostructures observed in butterflies to create impressive optic effects in paint, varnish, cosmetics, packaging materials and clothes. Industry is thus following butterfly wing research with great interest.

Communication Office | alfa
Further information:
http://www.rug.nl/corporate/nieuws/archief/archief2008/persberichten/004_08

Further reports about: Pigment Whites layers scale structure

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>