Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies all aglow light the way to cancer prevention

16.01.2008
A green glow from a fruit fly is giving researchers the green light when they are on the right path in their quest to develop compounds that help prevent cancer.

The glow, the result of some tinkering in Drosophila, the workhorse of the genetics world, lets researchers know when powerful cancer-prevention signals similar to those spurred by protective chemicals in broccoli, cabbage, and other foods, have been turned on in the organism.

The chemical signaling system is one of the major ways that the body defends itself against toxic assaults and threats like cigarette smoke, diesel exhaust, and dangerous microbes. A gene known as KEAP1 senses danger and then unleashes NRF2, which triggers rampant anti-oxidant activity in a cell.

Now scientists from the University of Rochester Medical Center have discovered that the pathway, long recognized in people and other animals, is active in fruit flies, too, opening the door to faster, less expensive ways to find compounds that spur our natural anti-oxidant activity. The work, funded by the National Cancer Institute, is reported in the Jan. 15 issue of Developmental Cell.

... more about:
»Active »Bohmann »Genetic »NRF2 »Sykiotis »anti-oxidant »organism

“This is one of the main mechanisms the body uses to fight off the things that give you cancer,” said Dirk Bohmann, Ph.D., professor in the Department of Biomedical Genetics and a geneticist who studies fruit flies in an effort ultimately aimed at improving human health.

“This puts cells into an anti-oxidant defense mode. Drug development and testing is very, very expensive and time-consuming. This work should speed the development of new drugs aimed at preventing cancer,” added Bohmann.

Bohmann did the work along with former postdoctoral Gerasimos P. Sykiotis, M.D., Ph.D., who teamed up with Bohmann to develop novel approaches for the study of the NRF2 pathway after earning his medical and doctoral degrees from the University of Patras in Greece. Sykiotis is now with the Model Organisms Unit of the Novartis Institutes for Biomedical Research in Cambridge, Mass., where he is applying the genetic tools generated in the study to characterize the role of NRF2 signaling in Drosophila models of human diseases.

Scientists have known that the pathway exists in people, rodents, and zebrafish, and so Bohmann and Sykiotis went hunting for it in the fruit fly genome. They found that one form of a gene called CNC, which is widely known to be involved in determining the development of a fruit fly’s head, serves like NRF2, turning on cellular defenses on a broad scale.

The defenses include activation of molecules known as thioredoxins and glutathione S-transferases, which are anti-oxidants that help a cell get rid of toxins and damaged molecules in its environment. Unlike popular anti-oxidants in certain foods and vitamins, whose effects in the body are transient, Bohmann points out that a fundamental genetic change like a boost in NRF2 activity throughout an organism would supply an ongoing amplified anti-oxidant response.

While the main application of the work is in boosting the body’s ability to resist cancer, the research could also make a difference for patients who have cancer that is resistant to current drugs. In 2006, a team from Johns Hopkins showed how this same signaling pathway allows some cancer cells to fight off drugs intended to kill them. Gaining a foothold on the system in fruit flies gives researchers an added tool as they search for ways to thwart these rogue cancer cells.

In their experiments, Bohmann and Sykiotis modified fruit flies so they would glow green when exposed to ultraviolet light when the signaling pathway is functioning. Sure enough, flies with more active CNC glow more brightly than regular flies, giving the team an easy, visual way to see whether the pathway is activated.

The team demonstrated the technology using a compound called oltipraz, which targets the pathway and has been tested in people as a cancer-prevention agent. The flies that ate food with the compound glowed more strongly, demonstrating that the NRF2 pathway was more active in these flies.

“Turning on our natural anti-oxidants is big business for many companies trying to develop compounds to protect us from cancer and to slow the aging process,” said Bohmann. “The same genetic principles govern many organisms, from flies to rodents to people, and we’re hopeful that our tool in fruit flies will speed this work for the benefit of patients.”

When Bohmann and Sykiotis boosted the activity of the pathway, fruit flies were three times more likely to survive an exposure to a toxin than regular flies. And flies with a more active signaling system can live 10 percent longer than the other flies.

It’s the first time that the system, long known to be an important anti-oxidant and cancer prevention pathway, has also been shown to play a role in giving an organism a longer lifespan. The link gives new insight into the well-established connection between aging and cancer risk.

Two of Bohmann’s colleagues at the University of Rochester Medical Center are also studying the NRF2 pathway. Steve Georas, M.D., professor of medicine and chief of the Division of Pulmonary and Critical Care, is looking at the role of NRF2 in people with asthma. And Irfan Rahman, Ph.D., associate professor of Environmental Medicine, has shown how NRF2 protects the lungs of smokers against the assault of cigarette smoke and other pollutants. He has shown that organisms in which NRF2 is weakened or absent have weak lungs and are much more prone to conditions like emphysema.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

Further reports about: Active Bohmann Genetic NRF2 Sykiotis anti-oxidant organism

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>