Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified carrots provide more calcium

15.01.2008
Genetically modifying carrots to express increased levels of a gene that enables the transport of calcium across membranes of plant cells can make the vegetables a better source of calcium, said researchers at Baylor College of Medicine in Houston and the Vegetable and Fruit Improvement Center at Texas A&M University in a report that appears today in the Proceedings of the National Academy of Sciences.

“Slightly altering the gene (sCAX1) to make it a more active transporter allows for increased bioavailable calcium in the carrots- ,” said Dr. Kendal Hirschi, professor of pediatrics-nutrition and principal investigator of the study conducted at the USDA/ARS Children’s Nutrition Research Center at BCM in cooperation with Texas Children’s Hospital.

In an initial study in mice, researchers found that those who were fed the carrots with the altered gene could get the same amount of calcium as those who ate twice the amount of normal carrots. In a study in 30 human adults, those who ate the modified carrots absorbed 41 percent more calcium than did those who ate the unmodified carrots.

“These carrots were grown in carefully monitored and controlled environments,” said Hirschi. “Much more research needs to be conducted before this would be available to consumers.”

... more about:
»Calcium »Hirschi »genetically »modified

Hirschi emphasizes that there is no magic food that will solve all nutritional problems, and that proper food and exercise are still necessary. However, further developments in this area of research could allow for more nutrients in fruits and vegetables and lead to improved health.

Osteoporosis, one of the world’s most prevalent nutritional disorders, is a disease that reduces bone mineral density in the body. Doctors usually prescribe more calcium and better calcium uptake as one solution to treat the disease. Increasing levels of calcium absorption from foods would have a significant global impact on this disease.

With physicians and nutrition experts recommending a vegetable-based diet for health, increasing the calcium that can be absorbed from plant-based food will become increasingly important, Hirschi said.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu
http://www.pnas.org

Further reports about: Calcium Hirschi genetically modified

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>