Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wildebeest or malaria parasite - same rules determine number of offspring

15.01.2008
Whether you are dealing with the number of wildebeest on the Serengeti or the number of malaria parasites in the human body, new research shows the same ecological framework determines breeding numbers and population size.

New research published today (15 January) in Proceedings of the National Academy of Sciences by a Biotechnology and Biological Sciences Research Council (BBSRC) Fellow shows that the same community ecology principles that determine how different animal species on the savannah affect each other's population sizes through competition for food and hunting by predators also affect parasite species interacting within the microcosm of a single host.

The research has important implications for treating many human and animal infections, including malaria and viruses. These infections rarely occur singularly and the research at the University of Edinburgh suggests that a range of drugs used to treat infection by parasitic worms may alter the effectiveness of anti-malarial and anti-viral treatments by affecting the level of competition among parasite species.

The research, conducted by Dr Andrea Graham, a BBSRC David Phillips Fellow at the University of Edinburgh, examined data from a large number of animal studies of coinfection. A microparasite infection such as malaria often occurs in people already suffering from other parasites, such as worms. The research shows that these multiple infections affect each other by competing for host nutrients or by generating an impaired immune system response. The effect is the same as if a large herd of wildebeest started to eat all the available food in an area of the Serengeti. Analogously, the study found that if a host was suffering from a worm infection that caused a reduction in a nutrient needed by another parasite in the body at the same time, the second parasite would be reduced in number. Conversely, if a worm infection suppressed the immune response, other parasites would explode in numbers, just as zebras would rapidly breed in the absence of lions.

... more about:
»Host »Malaria »determine »treat

Dr Graham said: "People and animals do not normally suffer just one parasite infection at a time. By applying the same ideas used in studies of big ecosystems to parasites I have been able to show that we need ecological thinking in order to understand and thus control multiple infections. This approach will help us to most effectively treat diseases such as malaria in a world that's full of co-infected hosts.

"Researchers have mostly studied and treated viral and bacterial infections in isolation. This is because multiple-species infections were previously thought to be far too complex to be understood. Now I've shown that we need to think like ecologists to make the problem more controllable."

Professor Nigel Brown, BBSRC Directory of Science and Technology, said: "This research focuses on understanding the fundamental biology of parasite infections but has huge practical implications. Ecological principles are here shown to have huge potential in understanding and treating parasitic disease, and shows the importance of interdisciplinary thinking in science and medicine."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Host Malaria determine treat

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>