Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein a possible key to allergy and asthma control

Activating a protein found on some immune cells seems to halt the cells’ typical job of spewing out substances that launch allergic reactions, a study by Johns Hopkins researchers suggests. The findings could eventually lead to new treatments for allergic reactions ranging from annoying bouts of hay fever to deadly asthma attacks.

Previous studies by Bruce Bochner and his colleagues at the Johns Hopkins Asthma and Allergy Center had zeroed in on the protein, Siglec-8, as an important player in allergic reactions. This protein is found on the surfaces of some types of immune cells, namely eosinophils, basophils and mast cells, which have diverse but cooperative roles in normal immune function and allergic diseases. Eosinophils directly combat foreign invaders, such as parasites. Basophils and mast cells store and release substances such as histamine, prostaglandins and cytokines, which signal other immune system cells to ready for battle.

When functioning correctly, these cells are a valuable aid to keeping the body healthy and infection-free. However, in allergic reactions and asthma attacks, the cells unleash an overwhelming response that typically harms the body more than it helps.

The researchers found in previous studies that when they activated Siglec-8 on the surface of eosinophils, the cells promptly died. Expecting the same suicidal response in mast cells, the scientists tested their theory in a new study on human mast cells and mast-cell-containing tissues.

Using mast cells grown in a lab, the researchers used antibodies to activate Siglec-8. “We were surprised to see that these cells just sat there happily in their petri dishes and lived on,” says Bochner, director of the Division of Allergy and Clinical Immunology at the Johns Hopkins University School of Medicine.

With their initial theory disproven, Bochner and his colleagues suspected that Siglec-8 might be slowing down other cellular processes based on the protein’s distinctive structure. To investigate what else Siglec-8 might inhibit, the scientists activated the protein in mast cells once again with antibodies. Then, they attempted to trigger an allergic response from these cells.

Normally, mast cells respond with an outpouring of histamine, prostaglandins and other substances that spur allergic reactions in other cells. However, Bochner and his colleagues found that cells with activated Siglec-8 released less than half the typical amount of these substances.

Extending their experiment from cells to whole tissues, Bochner and his colleagues used antibodies to activate mast cells’ Siglec-8 in small pieces of human lung saved from autopsies. When the researchers triggered the cells to release their payloads-an act that typically causes airways to sharply constrict-the contractions were about 25 percent weaker than in lung tissue where the mast cells’ Siglec-8 wasn’t activated.

The researchers are still unsure exactly how Siglec-8 inhibits mast cells from releasing their immune-triggering chemicals. However, follow-up experiments suggested that activating the protein keeps calcium from moving efficiently into the cells. Mast cells need this calcium signal to release their contents.

Bochner notes that researchers might eventually use these results, published in the February Journal of Allergy and Clinical Immunology, to develop a drug with this same effect. Such a drug would have the dual effect of blocking or reducing allergic reactions by killing eosinophils and preventing mast cells from releasing their substances.

“Both of these effects could make allergic diseases and asthma less severe,” he says. “It’s an intriguing approach because there are no drugs that specifically target both these cell types.”

Though drugs exist that affect either eosinophils or mast cells, Bochner says developing a single drug that takes aim at both types of cells could be even more effective than existing therapies and may also have a reduced risk of side effects. He and his colleagues are also searching for natural molecules in the body that activate Siglec-8, which could bring researchers a step closer to developing pharmaceuticals that target this protein.

Christen Brownlee | EurekAlert!
Further information:

Further reports about: Allergic Asthma Bochner Eosinophils Siglec-8 allergic reactions

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>