Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragile X retardation syndrome corrected in mice

20.12.2007
Researchers working with mice have significantly alleviated a wide range of abnormalities due to fragile X syndrome by altering only a single gene, countering the effects of the fragile X mutation.

They said their achievement offers the potential for treatment of the disorder, the most common form of inherited mental retardation and a leading identified genetic cause of autism. There is currently no treatment or therapy for fragile X syndrome, whose symptoms include mental retardation, epilepsy, and abnormal body growth.

Mark Bear and colleagues reported their findings in an article in the December 20, 2007, issue of the journal Neuron, published by Cell Press.

Fragile X syndrome is known to be caused by loss of the gene for “fragile X mental retardation protein” (FMRP), which is believed to act as a brake on protein synthesis in specific areas of brain circuitry. The authors’ idea was that loss of the “brake” would allow another protein that stimulates this process, called metabotropic glutamate receptor 5 (mGluR5), to function unchecked.

... more about:
»FMRP »Fragile »Mutant »Syndrome »mGluR5 »reduction »retardation

In their experiments to test this idea, the researchers studied mice that produce many of the characteristic pathologies of fragile X in humans due to a loss of the FMRP gene. The critical test, though, was when they also created double mutant mice that lacked both the FMRP gene and had a 50% reduction in mGluR5. They chose only to reduce the activity of the metabotropic glutamate receptor gene, rather than eliminate it, in order to reflect what might be achieved using drug treatment for fragile X in humans.

Their tests on the double mutant mice revealed that the mGluR5 gene reduction greatly alleviated many abnormalities produced by loss of FMRP. The double mutant mice showed a rescue of abnormalities in brain structure and function, brain protein synthesis, memory, and body growth.

For example, loss of the FMRP gene produces overgrowth of the connections among neurons called dendritic spines. However, the additional 50% reduction in mGluR5 gene produced mice with completely normal spine density.

The double mutants also showed substantial reduction in epileptic seizures caused by lack of FMRP, found the researchers.

They concluded that “it is remarkable that by reducing mGluR5 gene dosage by 50%, we were able to bring multiple, widely varied fragile X phenotypes significantly closer to normal.”

They also concluded that “These findings have major therapeutic implications for fragile X syndrome and autism.”

Cathleen Genova | EurekAlert!
Further information:
http://www.cell.com

Further reports about: FMRP Fragile Mutant Syndrome mGluR5 reduction retardation

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>