Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fragile X retardation syndrome corrected in mice

Researchers working with mice have significantly alleviated a wide range of abnormalities due to fragile X syndrome by altering only a single gene, countering the effects of the fragile X mutation.

They said their achievement offers the potential for treatment of the disorder, the most common form of inherited mental retardation and a leading identified genetic cause of autism. There is currently no treatment or therapy for fragile X syndrome, whose symptoms include mental retardation, epilepsy, and abnormal body growth.

Mark Bear and colleagues reported their findings in an article in the December 20, 2007, issue of the journal Neuron, published by Cell Press.

Fragile X syndrome is known to be caused by loss of the gene for “fragile X mental retardation protein” (FMRP), which is believed to act as a brake on protein synthesis in specific areas of brain circuitry. The authors’ idea was that loss of the “brake” would allow another protein that stimulates this process, called metabotropic glutamate receptor 5 (mGluR5), to function unchecked.

... more about:
»FMRP »Fragile »Mutant »Syndrome »mGluR5 »reduction »retardation

In their experiments to test this idea, the researchers studied mice that produce many of the characteristic pathologies of fragile X in humans due to a loss of the FMRP gene. The critical test, though, was when they also created double mutant mice that lacked both the FMRP gene and had a 50% reduction in mGluR5. They chose only to reduce the activity of the metabotropic glutamate receptor gene, rather than eliminate it, in order to reflect what might be achieved using drug treatment for fragile X in humans.

Their tests on the double mutant mice revealed that the mGluR5 gene reduction greatly alleviated many abnormalities produced by loss of FMRP. The double mutant mice showed a rescue of abnormalities in brain structure and function, brain protein synthesis, memory, and body growth.

For example, loss of the FMRP gene produces overgrowth of the connections among neurons called dendritic spines. However, the additional 50% reduction in mGluR5 gene produced mice with completely normal spine density.

The double mutants also showed substantial reduction in epileptic seizures caused by lack of FMRP, found the researchers.

They concluded that “it is remarkable that by reducing mGluR5 gene dosage by 50%, we were able to bring multiple, widely varied fragile X phenotypes significantly closer to normal.”

They also concluded that “These findings have major therapeutic implications for fragile X syndrome and autism.”

Cathleen Genova | EurekAlert!
Further information:

Further reports about: FMRP Fragile Mutant Syndrome mGluR5 reduction retardation

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>