Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building disease-beating wheat

14.12.2007
Disease resistance genes from three different grass species have been combined in the world’s first ‘trigenomic’ chromosome, which can now be used to breed disease resistant wheat varieties.

Pioneered by CSIRO researchers, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT) and Sydney University, the research illustrates the major genetic improvements possible without genetic modification (GM) technology.

“Wheat breeders often use wild relatives of wheat as sources of novel genes in breeding new disease-resistant wheats,” research team leader Dr Phil Larkin says.

“The exciting part of the new research is that we have been able to retain the useful genes but leave behind the associated undesirable genes - most notably in this case those for yellow flour colour, an important quality characteristic in wheat,” Dr Larkin says.“Unfortunately genes from wild relatives usually come in large blocks of hundreds of genes, and often include undesirable genes. Furthermore, these blocks of genes tend to stay together, even after many generations of breeding.

... more about:
»Larkin »blocks »breeders »relative »resistance »undesirable

“The problem can be so difficult to overcome that plant breeders sometimes give up on very valuable genes because they cannot separate them from the problematic genes.”

A paper published this month in the respected international journal Theoretical and Applied Genetics details how the team ‘recombined’ two wild blocks of genes from two different Thinopyrum grass species – a wild relative of wheat – bringing together resistance genes for leaf rust and Barley Yellow Dwarf Virus (BYDV), two of the world’s most damaging wheat diseases. The recombined gene ‘package’ may also carry a resistance gene against a new stem rust strain which is causing concern worldwide.

“The exciting part of the new research is that we have been able to retain the useful genes but leave behind the associated undesirable genes - most notably in this case those for yellow flour colour, an important quality characteristic in wheat,” Dr Larkin says.

By developing new ‘DNA markers’ and by careful testing the team has produced a number of the disease resistance ‘packages’ for wheat breeders, making it faster and easier to include these important disease resistance traits in future wheat varieties.

It is hoped other examples will follow and the genetic diversity available in wild species can be recruited more extensively for wheat improvement.

Tony Steeper | EurekAlert!
Further information:
http://www.csiro.au

Further reports about: Larkin blocks breeders relative resistance undesirable

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>