Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing protein 'garbage' in nerve cells may help control 2 neurodegenerative diseases

20.12.2012
Neuroscientists at Georgetown University Medical Center say they have new evidence that challenges scientific dogma involving two fatal neurodegenerative diseases — amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) — and, in the process, have uncovered a possible therapeutic target as a novel strategy to treat both disorders.
The study, posted online today in the Journal of Biological Chemistry, found that the issue in both diseases is the inability of the cell's protein garbage disposal system to "pull out" and destroy TDP-43, a powerful, sometimes mutated gene that produces excess amounts of protein inside the nucleus of a nerve cell, or neuron.

"This finding suggests that if we're able to 'rev up' that clearance machinery and help the cell get rid of the bad actors, it could possibly reduce or slow the development of ALS and FTD," says the study's lead investigator, neuroscientist Charbel E-H Moussa, MB, PhD. "The potential of such an advance is very exciting." He cautions, though, that determining if this strategy is possible in humans could take many years and will involve teams of researchers.

The way to rev up protein disposal is to add parkin — the cell's natural disposal units — to brain cells. In this study, Moussa and his colleagues demonstrated in two animal experiments that delivering parkin genes to neurons slowed down ALS pathologies linked to TDP-43."

Moussa says that his study further demonstrates that clumps known as "inclusions" of TDP-43 protein found inside neuron bodies in both disorders do not promote these diseases, as some researchers have argued.

What happens in both diseases is that this protein, which is a potent regulator of thousands of genes, leaves the nucleus and collects inside the gel-like cytoplasm of the neuron. In ALS, also known as Lou Gehrig's disease, this occurs in motor neurons, affecting movement; in FTD, it occurs in the frontal lobe of the brain, leading to dementia.

"In both diseases, TDP-43 is over-expressed or mutated, and the scientific debate has been whether loss of TDP-43 in the nucleus or gain of TDP-43 in the cytoplasm is the problem," Moussa says.

"Our study suggests TDP-43 in the cell cytoplasm is deposited there in order to eventually be destroyed — without contributing to disease — and that TDP-43 in the nucleus is causing the damage," he says. "Because so much protein is being produced, the cell can't keep up with removing these toxic particles in the nucleus and the dumping of them in the cytoplasm. There may be a way to fix this problem."

Moussa has long studied parkin, a molecule best known, when mutated and inactive, for its role in a familial form of Parkinson's disease. He has studied it in Alzheimer's disease and other forms of dementia. His hypothesis, which he has demonstrated in several recently published studies, is that parkin could help remove the toxic fragments of amyloid beta protein that builds up in the brains of Alzheimer's disease patients.

What's more, he developed a method to clear this amyloid beta when it begins to build up in neurons — a gene therapy strategy he has shown works in rodents. Work continues on this potential therapy.

In this study, Moussa found that parkin "tags" TDP-43 protein in the nucleus with a molecule that takes it from the nucleus and into the cytoplasm of the cell. "This is good. If TDP-43 is in the cytoplasm, it will prevent further nuclear damage and deregulation of genetic materials that determine protein identity," he says.

"This discovery challenges the dogma that accumulation of TDP-43 in the cytoplasm is," Moussa says. "We think parkin is tagging proteins in the nucleus for destruction, but there just isn't enough parkin around — compared with over-production of TDP-43 — to do the job."

Moussa says his next research steps will be to inject a drug that activates parkin to see whether that can prolong the lifespan and reduce motor defects in mice with ALS.

This work was supported by a grant (AG30378) from the National Institutes of Health and by Georgetown University funding.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>