Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing protein 'garbage' in nerve cells may help control 2 neurodegenerative diseases

20.12.2012
Neuroscientists at Georgetown University Medical Center say they have new evidence that challenges scientific dogma involving two fatal neurodegenerative diseases — amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) — and, in the process, have uncovered a possible therapeutic target as a novel strategy to treat both disorders.
The study, posted online today in the Journal of Biological Chemistry, found that the issue in both diseases is the inability of the cell's protein garbage disposal system to "pull out" and destroy TDP-43, a powerful, sometimes mutated gene that produces excess amounts of protein inside the nucleus of a nerve cell, or neuron.

"This finding suggests that if we're able to 'rev up' that clearance machinery and help the cell get rid of the bad actors, it could possibly reduce or slow the development of ALS and FTD," says the study's lead investigator, neuroscientist Charbel E-H Moussa, MB, PhD. "The potential of such an advance is very exciting." He cautions, though, that determining if this strategy is possible in humans could take many years and will involve teams of researchers.

The way to rev up protein disposal is to add parkin — the cell's natural disposal units — to brain cells. In this study, Moussa and his colleagues demonstrated in two animal experiments that delivering parkin genes to neurons slowed down ALS pathologies linked to TDP-43."

Moussa says that his study further demonstrates that clumps known as "inclusions" of TDP-43 protein found inside neuron bodies in both disorders do not promote these diseases, as some researchers have argued.

What happens in both diseases is that this protein, which is a potent regulator of thousands of genes, leaves the nucleus and collects inside the gel-like cytoplasm of the neuron. In ALS, also known as Lou Gehrig's disease, this occurs in motor neurons, affecting movement; in FTD, it occurs in the frontal lobe of the brain, leading to dementia.

"In both diseases, TDP-43 is over-expressed or mutated, and the scientific debate has been whether loss of TDP-43 in the nucleus or gain of TDP-43 in the cytoplasm is the problem," Moussa says.

"Our study suggests TDP-43 in the cell cytoplasm is deposited there in order to eventually be destroyed — without contributing to disease — and that TDP-43 in the nucleus is causing the damage," he says. "Because so much protein is being produced, the cell can't keep up with removing these toxic particles in the nucleus and the dumping of them in the cytoplasm. There may be a way to fix this problem."

Moussa has long studied parkin, a molecule best known, when mutated and inactive, for its role in a familial form of Parkinson's disease. He has studied it in Alzheimer's disease and other forms of dementia. His hypothesis, which he has demonstrated in several recently published studies, is that parkin could help remove the toxic fragments of amyloid beta protein that builds up in the brains of Alzheimer's disease patients.

What's more, he developed a method to clear this amyloid beta when it begins to build up in neurons — a gene therapy strategy he has shown works in rodents. Work continues on this potential therapy.

In this study, Moussa found that parkin "tags" TDP-43 protein in the nucleus with a molecule that takes it from the nucleus and into the cytoplasm of the cell. "This is good. If TDP-43 is in the cytoplasm, it will prevent further nuclear damage and deregulation of genetic materials that determine protein identity," he says.

"This discovery challenges the dogma that accumulation of TDP-43 in the cytoplasm is," Moussa says. "We think parkin is tagging proteins in the nucleus for destruction, but there just isn't enough parkin around — compared with over-production of TDP-43 — to do the job."

Moussa says his next research steps will be to inject a drug that activates parkin to see whether that can prolong the lifespan and reduce motor defects in mice with ALS.

This work was supported by a grant (AG30378) from the National Institutes of Health and by Georgetown University funding.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>