Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remembrance of tussles past: paper wasps show surprisingly strong memory for previous encounters

23.09.2008
With brains less than a millionth the size of humans', paper wasps hardly seem like mental giants. But new research at the University of Michigan shows that these insects can remember individuals for at least a week, even after meeting and interacting with many other wasps in the meantime.

The finding suggests that the wasps' social interactions are based on memories of past encounters rather than on rote adherence to simple rules.

The research, by graduate student Michael Sheehan and assistant professor of ecology and evolutionary biology Elizabeth Tibbetts, is scheduled to be published in the September 23rd issue of the journal Current Biology.

What's impressive about the wasps' abilities is not simply that they can remember past events. Honeybees, after all, can remember where they've found nectar. "But those memories are pretty fleeting," Sheehan said. "There seems to be a limit to the number of things they can juggle in their head at one time."

... more about:
»Sheehan »individuals »interactions »memories

Until now it was assumed that all social insects had similarly limited memories. But the new work shows that at least one species of paper wasp, Polistes fuscatus, has a strong, long-term memory and bases its behavior on what it remembers of previous social interactions with other wasps.

In earlier research, Tibbetts showed that these wasps recognize individuals by variations in their facial markings and that they behave more aggressively toward wasps with unfamiliar faces. If their memories are robust, the researchers reasoned, wasps should be less aggressive toward individuals they met even some time ago than toward new social partners.

To test the notion, Sheehan measured aggression between 50 wasp queens in four different encounters over eight days. On the first day, two wasps that never had met were placed in an observation chamber for a day and their initial interactions videotaped. Then the pair was separated, and each wasp was put in a communal cage with 10 other wasps. A week later, the pair met again, and again their behavior was videotaped.

When the researchers analyzed the videotapes, scoring the wasps' social interactions on a scale of zero (no aggression) to four (all-out grappling), it was clear that the wasps treated each other better during their second encounter than when they were strangers, suggesting they remembered each other.

"Instead of trying to bite each other and really have a rough-and-tumble encounter, they just sort of hung out next to each other when they met the second time," Sheehan said.

To make sure that any differences in aggression between the first and second encounters actually were based on memory, not just some general mellowing over time, the researchers introduced each wasp to a new stranger on the day before and the day after the encounter with its old familiar social partner. As expected, the wasps were just as nasty to total strangers as they had been to each when they first met.

"The interesting aspect of this work is not just that the wasps have a good memory, but that it's social memory," Sheehan said. "It seems that their specific social history with particular individuals is something they're keeping track of and that it matters to their lives."

It matters because Polistes fuscatus females often share nests. Remembering who they've already settled their differences with makes for a more harmonious home life and keeps them from wasting energy on repeated aggressive encounters.

The findings also challenge assumptions about social cognition, Sheehan said. Scientists have thought the ability to form social memories and use them as the basis for complex relationships was a driving force behind the evolution of large brains. But if tiny-brained wasps have such ability, perhaps it doesn't demand as much brainpower as previously thought.

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu
http://www.current-biology.com/

Further reports about: Sheehan individuals interactions memories

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>