Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Relaxation helps pack DNA into a virus


Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published in in the early edition of the Proceedings of the National Academy of Sciences the week of May 26 and the May 30 issue of Physical Review Letters.

DNA is a long, unwieldy molecule that tends to repel itself because it is negatively charged, yet it can spool tightly. Within the heads of viruses, DNA can be packed to near crystalline densities, crammed in by a molecular motor.

This image shows cross-sections of the empty prohead of the bacteriophage phi29 (left) and the fully assembled virus (right). A molecular motor transports the DNA (red) into the prohead through a portal. Higher resolution TIFF image available.

Credit: Jingua Tang and Timothy Baker, University of California, San Diego

"These are among the most powerful molecular motors we know of," says Douglas Smith, a professor of physics whose group studies them.

Within an infected cell, viruses assemble in a matter of minutes. Smith's group studies the process by isolating components of this system to watch single molecules in action.

... more about:
»DNA »Relaxation »equilibrium »knots »matter »viruses

They attach the empty head of a single virus, along with the molecular motor, to a microscopic bead that can be moved about using a laser. To another bead, they tether a molecule of viral DNA.

"It's like fishing," Smith says. "We dangle a DNA molecule in front of the viral motor. If we're lucky, the motor grabs the DNA and starts pulling it in."

Packaging proceeds in fits and starts, with slips and pauses along the way. These pauses increase, along with forces the motor counters, as the viral head becomes full.

Scientists who model this process have had to make assumptions about the state of the DNA within. An open question is whether the DNA is in its lowest energy state, that is at equilibrium, or in a disordered configuration.

"In confinement, it could be forming all kinds of knots and tangles," said Zachary Berndsen, a graduate student in biochemistry who works with Smith and is the lead author of the PNAS paper.

To figure this out, Berndsen stalled the motor by depriving it of chemical energy, and found that packaging rates picked up when the motor restarted. The longer the stall, the greater the acceleration.

DNA takes more than 10 minutes to fully relax inside the confines of a viral head where there's little wiggle room, the team found. That's 60,000 times as long as it takes unconfined DNA to relax.

"How fast this virus packages DNA is determined by physics more than chemistry," Smith said.

DNA's tendency to repel itself due to its negative charge may actually facilitate the relaxation. In related experiments, the researchers added spermidine, a positively charged molecule that causes DNA in solution to spool up.

"You might think the stickiness would enhance packing, but we find that the opposite is true," said Nicholas Keller, the lead author of this second report, published in Physical Review Letters.

Countering the negative charges, particularly to the point of making the DNA attractive to itself, actually hindered the packaging of DNA.

"The DNA can get trapped into conformations that just stop the motor," Keller said.

"We tend to think of DNA for its information content, but living systems must also accommodate the physical properties of such a long molecule," Berndsen said. "Viruses and cells have to deal with the forces involved."

Beyond a clearer understanding of how viruses operate, the approach offers a natural system that is a model for understanding and studying the physics of long polymers like DNA in confined spaces. The insights could also inform biotechnologies that enclose long polymers within minuscule channels and spheres in nanscale devices.


Shelley Grimes and Paul Jardine, microbiologists at the University of Minnesota co-authored both papers. Damian delToro, a graduate student in physics at UC San Diego, co-authored the paper published by Physical Review Letters.

The National Science Foundation and the National Institute of General Medical Sciences funded the work.

Doug Smith | Eurek Alert!
Further information:

Further reports about: DNA Relaxation equilibrium knots matter viruses

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>