Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relaxation helps pack DNA into a virus

27.05.2014

Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published in in the early edition of the Proceedings of the National Academy of Sciences the week of May 26 and the May 30 issue of Physical Review Letters.

DNA is a long, unwieldy molecule that tends to repel itself because it is negatively charged, yet it can spool tightly. Within the heads of viruses, DNA can be packed to near crystalline densities, crammed in by a molecular motor.


This image shows cross-sections of the empty prohead of the bacteriophage phi29 (left) and the fully assembled virus (right). A molecular motor transports the DNA (red) into the prohead through a portal. Higher resolution TIFF image available.

Credit: Jingua Tang and Timothy Baker, University of California, San Diego

"These are among the most powerful molecular motors we know of," says Douglas Smith, a professor of physics whose group studies them.

Within an infected cell, viruses assemble in a matter of minutes. Smith's group studies the process by isolating components of this system to watch single molecules in action.

... more about:
»DNA »Relaxation »equilibrium »knots »matter »viruses

They attach the empty head of a single virus, along with the molecular motor, to a microscopic bead that can be moved about using a laser. To another bead, they tether a molecule of viral DNA.

"It's like fishing," Smith says. "We dangle a DNA molecule in front of the viral motor. If we're lucky, the motor grabs the DNA and starts pulling it in."

Packaging proceeds in fits and starts, with slips and pauses along the way. These pauses increase, along with forces the motor counters, as the viral head becomes full.

Scientists who model this process have had to make assumptions about the state of the DNA within. An open question is whether the DNA is in its lowest energy state, that is at equilibrium, or in a disordered configuration.

"In confinement, it could be forming all kinds of knots and tangles," said Zachary Berndsen, a graduate student in biochemistry who works with Smith and is the lead author of the PNAS paper.

To figure this out, Berndsen stalled the motor by depriving it of chemical energy, and found that packaging rates picked up when the motor restarted. The longer the stall, the greater the acceleration.

DNA takes more than 10 minutes to fully relax inside the confines of a viral head where there's little wiggle room, the team found. That's 60,000 times as long as it takes unconfined DNA to relax.

"How fast this virus packages DNA is determined by physics more than chemistry," Smith said.

DNA's tendency to repel itself due to its negative charge may actually facilitate the relaxation. In related experiments, the researchers added spermidine, a positively charged molecule that causes DNA in solution to spool up.

"You might think the stickiness would enhance packing, but we find that the opposite is true," said Nicholas Keller, the lead author of this second report, published in Physical Review Letters.

Countering the negative charges, particularly to the point of making the DNA attractive to itself, actually hindered the packaging of DNA.

"The DNA can get trapped into conformations that just stop the motor," Keller said.

"We tend to think of DNA for its information content, but living systems must also accommodate the physical properties of such a long molecule," Berndsen said. "Viruses and cells have to deal with the forces involved."

Beyond a clearer understanding of how viruses operate, the approach offers a natural system that is a model for understanding and studying the physics of long polymers like DNA in confined spaces. The insights could also inform biotechnologies that enclose long polymers within minuscule channels and spheres in nanscale devices.

###

Shelley Grimes and Paul Jardine, microbiologists at the University of Minnesota co-authored both papers. Damian delToro, a graduate student in physics at UC San Diego, co-authored the paper published by Physical Review Letters.

The National Science Foundation and the National Institute of General Medical Sciences funded the work.

Doug Smith | Eurek Alert!
Further information:
http://www.ucsd.edu

Further reports about: DNA Relaxation equilibrium knots matter viruses

More articles from Life Sciences:

nachricht Strong Evidence – New Insight in Muscle Function
27.04.2015 | Austrian Science Fund FWF

nachricht Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants
27.04.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>