Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recovery of Green and Healthy Antioxidant from Palm Oil Mill Waste

05.08.2008
This research from USM enables valuable carotenes to be recovered from polluting palm oil mill effluent, thus creating a cheap source of carotenes. The global market for carotenoids is at USD 1 billion, rising by 2.9 per cent annually.

Antioxidants are substances that may protect our cells against the effects of free radicals. Antioxidant substances include beta-carotene, vitamin A, vitamin C and vitamin E. Carotenes possess anti-cancer properties for preventing certain types of cancer diseases, enhance immunity, prevent blindness and skin disorders, as well as to protect against toxins, colds, flu and infections.

The benefits of carotenes are shown in Figure 1 (download file). World Health Organization considers vitamin A deficiency to be a public health problem in more than half of all countries and particular beta-carotene is the most important vitamin A precursor in human nutrition.

Carotenes can be found in yellow, orange, and green leafy fruits and vegetables. These can be carrots, spinach, lettuce, tomatoes, sweet potatoes, broccoli, cantalouporangee, , winter squash and etc. as shown in Figure 2 (Download file). The demand for carotenes is high but carotenes preparations derived from extraction of vegetables are expensive due to high cost of raw materials. Since palm oil mills generate abundance of palm oil mill effluent (POME), carotenes can be recovered from the waste. POME are predominantly organic in nature and are highly polluting as shown in Figure 3.

... more about:
»Antioxidant »POME »carotene

Malaysia is basically an agricultural country and the major polluting industrial effluents have been from agro-based industries, which is palm oil industry. About 3 tonnes of POME was produced for every tonne of oil extracted in an oil mill. In 2007 alone, 15.8 milllion tonnes of crude palm oil (CPO) have been produced, resulting in 47.4 million tonnes of POME. 284,000 tonnes of oil can be extracted from POME along with recovery of 140,000 kg of carotenes. If the POME is discharged untreated, for 47.4 million tonnes of POME, the amount of biochemical oxygen demand (BOD) produced is 1.185 million tonnes which is equivalent to the waste generated by 64,931,500 citizens of the country (assuming each citizen produce 18.25 kg of BOD every year).

The global market for carotenoids is at USD 1 billion which rise annually by 2.9 per cent. The market value of natural carotenes is about RM6000 per kg. By treating POME accordingly, a 60 tonne FFB/hr palm oil mill can generate RM 5.52 M per year from carotenes recovery and for whole Malaysia the gross income generate from recovery of carotenes is about RM 852 M per year (Figure 4). This creates an opportunity for the palm oil millers to have a side income.

Carotenes can be recovered from POME, a readily available raw material and it is a breakthrough in POME wastewater treatment as no similar invention has been reported. Through this research, a downstream processing technology for converting POME into value added natural product, carotene is developed. Organic-aqueous extraction is used to retrieve oil from POME and adsorption chromatography approach is further adopted to recover the carotenes contained in the oil. This is in line with the world awareness towards creating a clean and healthy environment by using green technology, where waste is changed into wealth. Figure 5 shows the extraction of oil and carotenes recovery process.

This research creates a new and cheap source to attain carotenes. The utilization and reuse of agricultural waste into commercial value added product indirectly solve the environmental problem. Carotenes can be applicable as natural compounds in food, cosmetic and pharmaceutical industries.

The whole process is a sustainable development for palm oil industries (Figure 6) where the pollution potential of POME which is oil and grease are removed for carotenes recovery and the remaining POME is water and solids which are non-hazardous. The remaining solids can be easily converted to organic fertilizer and the water can be recycled back for the palm oil mill usage. The organic fertilizer can be used for plantation and provides many benefits to the cultivation of oil palm.

In conclusion, this research changes waste into gold by incorporating the zero-discharge concept. The wastes produced are converted into products with high commercial values. It also gives positive impact to the public by solving environmental problem besides giving value added products.

Mohamad Abdullah | ResearchSEA
Further information:
http://www.usm.my
http://www.researchsea.com

Further reports about: Antioxidant POME carotene

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>