Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recovery of Green and Healthy Antioxidant from Palm Oil Mill Waste

05.08.2008
This research from USM enables valuable carotenes to be recovered from polluting palm oil mill effluent, thus creating a cheap source of carotenes. The global market for carotenoids is at USD 1 billion, rising by 2.9 per cent annually.

Antioxidants are substances that may protect our cells against the effects of free radicals. Antioxidant substances include beta-carotene, vitamin A, vitamin C and vitamin E. Carotenes possess anti-cancer properties for preventing certain types of cancer diseases, enhance immunity, prevent blindness and skin disorders, as well as to protect against toxins, colds, flu and infections.

The benefits of carotenes are shown in Figure 1 (download file). World Health Organization considers vitamin A deficiency to be a public health problem in more than half of all countries and particular beta-carotene is the most important vitamin A precursor in human nutrition.

Carotenes can be found in yellow, orange, and green leafy fruits and vegetables. These can be carrots, spinach, lettuce, tomatoes, sweet potatoes, broccoli, cantalouporangee, , winter squash and etc. as shown in Figure 2 (Download file). The demand for carotenes is high but carotenes preparations derived from extraction of vegetables are expensive due to high cost of raw materials. Since palm oil mills generate abundance of palm oil mill effluent (POME), carotenes can be recovered from the waste. POME are predominantly organic in nature and are highly polluting as shown in Figure 3.

... more about:
»Antioxidant »POME »carotene

Malaysia is basically an agricultural country and the major polluting industrial effluents have been from agro-based industries, which is palm oil industry. About 3 tonnes of POME was produced for every tonne of oil extracted in an oil mill. In 2007 alone, 15.8 milllion tonnes of crude palm oil (CPO) have been produced, resulting in 47.4 million tonnes of POME. 284,000 tonnes of oil can be extracted from POME along with recovery of 140,000 kg of carotenes. If the POME is discharged untreated, for 47.4 million tonnes of POME, the amount of biochemical oxygen demand (BOD) produced is 1.185 million tonnes which is equivalent to the waste generated by 64,931,500 citizens of the country (assuming each citizen produce 18.25 kg of BOD every year).

The global market for carotenoids is at USD 1 billion which rise annually by 2.9 per cent. The market value of natural carotenes is about RM6000 per kg. By treating POME accordingly, a 60 tonne FFB/hr palm oil mill can generate RM 5.52 M per year from carotenes recovery and for whole Malaysia the gross income generate from recovery of carotenes is about RM 852 M per year (Figure 4). This creates an opportunity for the palm oil millers to have a side income.

Carotenes can be recovered from POME, a readily available raw material and it is a breakthrough in POME wastewater treatment as no similar invention has been reported. Through this research, a downstream processing technology for converting POME into value added natural product, carotene is developed. Organic-aqueous extraction is used to retrieve oil from POME and adsorption chromatography approach is further adopted to recover the carotenes contained in the oil. This is in line with the world awareness towards creating a clean and healthy environment by using green technology, where waste is changed into wealth. Figure 5 shows the extraction of oil and carotenes recovery process.

This research creates a new and cheap source to attain carotenes. The utilization and reuse of agricultural waste into commercial value added product indirectly solve the environmental problem. Carotenes can be applicable as natural compounds in food, cosmetic and pharmaceutical industries.

The whole process is a sustainable development for palm oil industries (Figure 6) where the pollution potential of POME which is oil and grease are removed for carotenes recovery and the remaining POME is water and solids which are non-hazardous. The remaining solids can be easily converted to organic fertilizer and the water can be recycled back for the palm oil mill usage. The organic fertilizer can be used for plantation and provides many benefits to the cultivation of oil palm.

In conclusion, this research changes waste into gold by incorporating the zero-discharge concept. The wastes produced are converted into products with high commercial values. It also gives positive impact to the public by solving environmental problem besides giving value added products.

Mohamad Abdullah | ResearchSEA
Further information:
http://www.usm.my
http://www.researchsea.com

Further reports about: Antioxidant POME carotene

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>