Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recently analyzed fossil was not human ancestor as claimed, anthropologists say

03.03.2010
Darwinius was ancestor to lemurs and lorises, research shows

A fossil that was celebrated last year as a possible "missing link" between humans and early primates is actually a forebearer of modern-day lemurs and lorises, according to two papers by scientists at The University of Texas at Austin, Duke University and the University of Chicago.

In an article now available online in the Journal of Human Evolution, four scientists present evidence that the 47-million-year-old Darwinius masillae is not a haplorhine primate like humans, apes and monkeys, as the 2009 research claimed.

They also note that the article on Darwinius published last year in the journal PLoS ONE ignores two decades of published research showing that similar fossils are actually strepsirrhines, the primate group that includes lemurs and lorises.

"Many lines of evidence indicate that Darwinius has nothing at all to do with human evolution," says Chris Kirk, associate professor of anthropology at The University of Texas at Austin. "Every year, scientists describe new fossils that contribute to our understanding of primate evolution. What's amazing about Darwinius is, despite the fact that it's nearly complete, it tells us very little that we didn't already know from fossils of closely related species."

His co-authors are anthropologists Blythe Williams and Richard Kay of Duke and evolutionary biologist Callum Ross of the University of Chicago. Williams, Kay and Kirk also collaborated on a related article about to be published in the Proceedings of the National Academy of Sciences that reviews the early fossil record and anatomical features of anthropoids – the primate group that includes monkeys, apes, and humans.

Last spring's much-publicized article on Darwinius was released in conjunction with a book, a History Channel documentary, and an exhibit in the American Museum of Natural History. At a news conference attended by New York Mayor Michael Bloomberg, the authors unveiled the nearly complete fossil of a nine-month-old female primate that had been found at the site of Messel in Germany.

But other anthropologists were immediately skeptical of the conclusions and began writing the responses that are being published this month.

"Just because it's a complete and well-preserved fossil doesn't mean it's going to overthrow all our ideas," says Williams, the lead author. "There's this enormous body of literature that has built up over the years. The Darwinius research completely ignored that body of literature."

That literature centers on the evolution of primates, which include haplorhines (apes, monkeys, humans, tarsiers) and strepsirrhines (lemurs, lorises). The two groups split from each other nearly 70 million years ago.

The fossil group to which Darwinius belongs – the adapiforms – have been known since the early 1800s and includes dozens of primate species represented by thousands of fossils recovered in North America, Europe, Asia and Africa. Some adapiforms, like North American Notharctus, are known from nearly complete skeletons like that of Darwinius. Most analyses of primate evolution over the past two decades have concluded that adapiforms are strepsirrhines, and not direct ancestors of modern humans.

The most recent such analysis, published last year in the journal Nature, concluded that Darwinius is an early strepsirrhine and a close relative of the 39-million-year- old primate Mahgarita stevensi from West Texas.

Nevertheless, the scientists who last year formally described Darwinius concluded that it was an early haplorhine, and even suggested that Darwinius and other adapiform fossils "could represent a stem group from which later anthropoid primates evolved."

For example, they note that Darwinius has a short snout and a deep jaw – two features that are found in monkeys, apes, and humans.

However, Kirk, Williams and their colleagues point out that short snouts and deep jaws are known to have evolved multiple times among primates, including several times within the lemur/loris lineage. They further argue that Darwinius lacks most of the key anatomical features that could demonstrate a close evolutionary relationship with living haplorhines (apes, monkeys, humans, and tarsiers).

For instance, haplorhines have a middle ear with two chambers and a plate of bone that shields the eyes from the chewing muscles.

"There is no evidence that Darwinius shared these features with living haplorhines," says Kirk. "And if you can't even make that case, you can forget about Darwinius being a close relative of humans or other anthropoids."

For more information, please contact:
Chris Kirk, eckirk@mail.utexas.edu, 512 471 0056
Blythe Williams, blythe.williams@duke.edu, 919 660-7385
Gary Susswein, College of Liberal Arts,
susswein@austin.utexas.edu, 512-471-4945

Gary Susswein | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>