Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recent highlights in Molecular Biology and Evolution

18.09.2013
Diversity of microbial growth strategies in a limited nutrient world

The budding yeast, Saccharomyces cerevisiae, is a prime organism for studying fundamental cellular processes, with the functions of many proteins important in the cell cycle and signaling networks found in human biology having first been discovered in yeast.

Now, scientists from New York University have now developed a sophisticated assay to track cell growth at very low nutrient concentrations. The assay uses time-lapse microscopy to monitor individual yeast cells undergoing a small number of divisions to form microcolonies.

The assay can measure the lag times and growth rates of as many as 80,000 individual microcolonies in a single 24-hour experiment, opening up a powerful new high-throughput tool to study the complex interplay between cell growth, division and metabolism under environmental conditions that are likely to be ecologically relevant but had previously been difficult to study in the laboratory.

The researchers studied growth rates and lag times in both lab strains and wild yeast by varying the amount of its prime carbon food source, glucose. They confirmed the prediction made over 60 years ago by Noble-prize-winning biologist Jacques Monod regarding changes in microbial growth rates with limited nutrients (the Monod equation). They also found significant differences among strains in both the average lag response (the amount of time it takes to transition from cell quiescence to restarting cell growth) and average growth rates in response to different environmental conditions.

In addition to average differences between strains and conditions, the powerful assay revealed metabolic differences among cells of the same strain in the same environment. Moreover, yeast strains differed in their variances in growth rate. According to the study's lead author, Naomi Ziv, "Heterogeneity among genetically identical cells in the same environment is a topic of increasing interest in biology and medicine. The different strain variances we see suggest that the extent of nongenetic heterogeneity is itself genetically determined."

Further investigations could pave the way to a more complete understanding of the genetics and metabolomics of cell growth in yeast and the underlying mechanisms relevant to other settings in which cells face challenging conditions, such as cancer progression and the evolution of drug resistance.

To access the full online article: http://mbe.oxfordjournals.org/content/early/2013/08/11/molbev.mst138.abstract

Media sources:

David Gresham
Center for Genomics and Systems Biology
Department of Biology
New York University,
New York, USA
dgresham@nyu.edu
Mark L. Siegal
Center for Genomics and Systems Biology
Department of Biology
New York University,
New York, USA
mark.siegal@nyu.edu
Examining the source behind Sherpa mountain fitness

The Sherpa population in Tibet is world-renowned for their extraordinary high-altitude fitness, as most famously demonstrated by Tenzing Norgay's ability to conquer Mount Everest alongside Sir Edmund Hillary. The genetic adaptation behind this fitness has been a topic of hot debate in human evolution, with recent full genome sequencing efforts completed to look for candidate genes necessary for low oxygen adaptation. However, few have looked at the Sherpa population by sequencing their mitochondrial genomes---the powerhouse of every cell that helps determine the degree of respiratory fitness by providing 90 percent of the human body's energy demand, as well as controlling the metabolic rate and use of oxygen.

Unlike genomic DNA, the mitochondrial genome is unique inherited only through the mother, is small in size, and has a high mutation rate. Researchers Longli Kang, Li Jin et al. have sequenced 76 Sherpa individuals' complete mitochondrial genomes living in Zhangmu Town, Tibet, and found two mutations that were specific to the Sherpa population. The authors suggest that variants for one recent mutation in particular that was introduced into the Sherpa population about 1,500 years ago, A4e3a, that may be an important adaptation for low oxygen environments, or hypoxic conditions. This mutation is found in an "entry enzyme" stage in the mitochondrial respiratory complex, which may explain the importance of the role of mitochondria in the Sherpa population's ability to adapt to the extreme Himalayan environment.

The authors also shed light on the demographic history of Sherpa population size over evolutionary time, showing a significant expansion from 3,000 to 23,000 around 50,000 years ago, followed by a very recent bottleneck in the past several hundred years that reduced the population from 10,000 to 2,400, matching known historical migration patterns.

Media source:

Prof. Li Jin
Lijin.fudan@gmail.com
Ministry of Education Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology,
School of Life Sciences and Institutes of Biomedical Sciences,
Fudan University, Shanghai, China.
To access the online article: http://mbe.oxfordjournals.org/content/early/2013/08/29/molbev.mst147.abstract

Joe Caspermeyer | EurekAlert!
Further information:
http://www.nyu.edu
http://mbe.oxfordjournals.org/content/early/2013/08/29/molbev.mst147.abstract

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>