Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rearranging the Cell’s Skeleton

06.02.2012
Small molecules at the cell’s membrane enable cell movement

Cell biologists at Johns Hopkins have identified key steps in how certain molecules alter a cell’s skeletal shape and drive the cell’s movement.

Results of their research, published in the December 13 issue of Science Signaling, have implications for figuring out what triggers the metastatic spread of cancer cells and wound-healing.

“Essentially we are figuring out how cells crawl,” says Takanari Inoue, Ph.D., an assistant professor of cell biology and member of the Center for Cell Dynamics in the Johns Hopkins University School of Medicine’s Institute for Basic Biomedical Sciences. “With work like ours, scientists can reveal what happens when cells move when they aren’t supposed to.”

Their new discovery highlights the role of the cell’s skeleton, or cytoskeleton, in situations where “shape shifting” can rapidly change a cell’s motion and function in response to differing environmental conditions.

When cell’s such as fibroblasts, which gather to heal wounds, move from one place to another, its cytoskeleton forms ripple-like waves or ruffles across its surface that move towards the front of the cell and down, helping pull the cell across a surface. Researchers have shown that these ruffles form when a small molecule, PIP2, appears on the inside surface of the membrane at the front edge of a cell. Until now, however, they have been unable to recreate cell ruffles simply by directing PIP2 to the cell’s front edge. Manipulations have instead led the cytoskeleton to form completely different structures, squiggles that zip across the inside of the cell like shooting stars across the sky, which the researchers call comets.

In their experiments, Inoue and his group looked for factors that determined whether a cell forms ruffles or comets. The researchers tried to create ruffles on the cell by sending in an enzyme to the cell membrane that converts another small molecule into PIP2. Using cytoskeleton building blocks marked to glow, the team used a microscope to watch the cytoskeleton assembling itself and saw that this approach caused the cytoskeleton to form comets, not the ruffles that the researchers had predicted.

The team suspected that comets formed because of a fall in levels of another small molecule used to make PIP2, PI4P.

To test this idea, the researchers tried to make ruffles on cells only by increasing PIP2 at the membrane, rather than changing the quantities of any other molecules. Using molecular tricks that hid existing PIP2 then revealed it, the researchers effectively increased the amount of available PIP2 at the membrane. This time the researchers saw ruffles.

“Now that we’ve figured out this part of how cells make ruffles, we hope to continue teasing apart the mechanism of cell movement to someday understand metastasis,” says Inoue.

“It will be interesting to manipulate other molecules at the cell surface to see what other types of cytoskeletal conformations we can control,” he says.

Tasuku Ueno and Christopher Pohlmeyer of Johns Hopkins University School of Medicine and Björn Falkenburger of the University of Washington were additional authors of the study.

This study was funded by grants from the National Institutes of Health and the Japan Society for the Promotion of Science.

*Images available upon request*

Videos:
Cell membrane ripples (ruffles): http://www.youtube.com/watch?v=FdX1UeekIFU
Comets: http://www.youtube.com/watch?v=UFYvAaq2hUM
Related Stories:
Researchers Use Light To Move Molecules: http://www.hopkinsmedicine.org/news/media/releases/hopkins_researchers_use

_light_to_move_molecules

Researchers Put Proteins Right Where They Want Them: Location Determines a Protein's Role: http://www.hopkinsmedicine.org/news/media/releases/Hopkins_Researchers_Put

_Proteins_Right_Where_They_Want_Them

Takanari Inoue on the leading edge of migrating cells: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_us

/scientists/takanari_inoue.html

On the Web:
Takanari Inoue: http://www.hopkinsmedicine.org/cellbio/dept/InoueProfile.html
Department of Cell Biology: http://www.hopkinsmedicine.org/cellbio/dept/index.html

Institute for Basic Biomedical Sciences: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/

Vanessa McMains | Newswise Science News
Further information:
http://www.jhmi.edu

Further reports about: Biomedical Biomedical Science Rearranging building block cell death skeleton

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>