Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapidly mutating yeast causing more infections

02.04.2009
During the recent years yeasts have been causing more and more infections in humans. One of them can mutate surprisingly quickly by reorganizing its chromosomes. This enables this yeast to tolerate higher doses of anti-fungal medicine. This is shown by new research findings from the Lund University in Sweden.

A yeast named Candida glabrata commonly occurs in humans, usually on our skin. It does little harm there. But if it enters the blood system, it can be directly life threatening to people with poor immune defense, such as cancer and AIDS patients.

"It can actually eat you up from the inside," says Jure Piškur, professor at the Department of Cell and Organism Biology at the Lund University.

Jure Piškur, together with a team of research colleagues, has studied the underlying reasons that this yeast can cause more and more infections in humans. The research team has discovered that Candida glabrata can mutate surprisingly rapidly. Instead of mutations occurring in individual genes, this yeast can mutate by reorganizing their chromosomes and make extra copies of large chromosome pieces.

The consequence of this is that Candida glabrata is becoming more and more resistant to fungicidal medicine. The present research report shows that a certain mini-chromosome can enable the yeast fungus to survive even if it is treated with nearly ten times the normal dose of the fungicide fluconazole.

"Our research now aims to identify the weak points in Candida glabrata so that we can develop effective medicine," says Jure Piškur.

Candida glabrata has become the second most common yeast pathogen in humans. It primarily causes irritation, in the genitals, for instance. Jure Piškur stresses that people whose immune defense is normal run very little risk of being affected by the life-threatening form of fungal infection in the blood system.

The most common type of fungus in humans is called Candida albicans and causes commonly occurring infections in women's genitals. This yeast fungus is relatively easy to treat with fungicides. But more and more often after the treatment Candida albicans is replaced with the more resistant Candida glabrata.

The research findings regarding Candida glabrata were recently presented in two scientific journals, PNAS and Nature Review Microbiology.

PNAS 2009 106:2688-2693; published online before print February 9, 2009, doi:10.1073/pnas.0809793106

Fungal Pathogenesis: Varying for virulence
Nature Reviews Microbiology 7, 256 - 257 (01 Apr 2009), doi: 10.1038/nrmicro2125, Research Highlight

For more information, please contact Jure Piškur, phone: +46 (0)46 - 222 83 73 or Jure.Piskur@cob.lu.se

Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 71 86

Facts about chromosomes and genes:
Chromosomes are the structures that all genes sit on. If the genome is seen as a book and chromosomes as the pages of the book, then genes are the words on each page. Instead of individual words changing, which is what happens in normal mutations, in C. glabrata its pages are mixed and in certain cases also copied and placed in the book in a new order. The genes are thus the same as before, but the genetic make-up as a whole is altered and this likely influences the gene expression.

Lena Björk Blixt | idw
Further information:
http://www.vr.se
http://www.pnas.org/content/106/8/2688.full?sid=e1d75c59-1e52-471b-9647-f83d9b54e5b1

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>