Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapidly mutating yeast causing more infections

02.04.2009
During the recent years yeasts have been causing more and more infections in humans. One of them can mutate surprisingly quickly by reorganizing its chromosomes. This enables this yeast to tolerate higher doses of anti-fungal medicine. This is shown by new research findings from the Lund University in Sweden.

A yeast named Candida glabrata commonly occurs in humans, usually on our skin. It does little harm there. But if it enters the blood system, it can be directly life threatening to people with poor immune defense, such as cancer and AIDS patients.

"It can actually eat you up from the inside," says Jure Piškur, professor at the Department of Cell and Organism Biology at the Lund University.

Jure Piškur, together with a team of research colleagues, has studied the underlying reasons that this yeast can cause more and more infections in humans. The research team has discovered that Candida glabrata can mutate surprisingly rapidly. Instead of mutations occurring in individual genes, this yeast can mutate by reorganizing their chromosomes and make extra copies of large chromosome pieces.

The consequence of this is that Candida glabrata is becoming more and more resistant to fungicidal medicine. The present research report shows that a certain mini-chromosome can enable the yeast fungus to survive even if it is treated with nearly ten times the normal dose of the fungicide fluconazole.

"Our research now aims to identify the weak points in Candida glabrata so that we can develop effective medicine," says Jure Piškur.

Candida glabrata has become the second most common yeast pathogen in humans. It primarily causes irritation, in the genitals, for instance. Jure Piškur stresses that people whose immune defense is normal run very little risk of being affected by the life-threatening form of fungal infection in the blood system.

The most common type of fungus in humans is called Candida albicans and causes commonly occurring infections in women's genitals. This yeast fungus is relatively easy to treat with fungicides. But more and more often after the treatment Candida albicans is replaced with the more resistant Candida glabrata.

The research findings regarding Candida glabrata were recently presented in two scientific journals, PNAS and Nature Review Microbiology.

PNAS 2009 106:2688-2693; published online before print February 9, 2009, doi:10.1073/pnas.0809793106

Fungal Pathogenesis: Varying for virulence
Nature Reviews Microbiology 7, 256 - 257 (01 Apr 2009), doi: 10.1038/nrmicro2125, Research Highlight

For more information, please contact Jure Piškur, phone: +46 (0)46 - 222 83 73 or Jure.Piskur@cob.lu.se

Pressofficer Lena Björk Blixt; Lena.Bjork_Blixt@kanslin.lu.se;+46-46 222 71 86

Facts about chromosomes and genes:
Chromosomes are the structures that all genes sit on. If the genome is seen as a book and chromosomes as the pages of the book, then genes are the words on each page. Instead of individual words changing, which is what happens in normal mutations, in C. glabrata its pages are mixed and in certain cases also copied and placed in the book in a new order. The genes are thus the same as before, but the genetic make-up as a whole is altered and this likely influences the gene expression.

Lena Björk Blixt | idw
Further information:
http://www.vr.se
http://www.pnas.org/content/106/8/2688.full?sid=e1d75c59-1e52-471b-9647-f83d9b54e5b1

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>