Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAD-tagging technology is demystifying genome sequencing

27.04.2011
University of Oregon researchers document how their technique quickly puts a genome together

Take millions of puzzle pieces containing partial words and put them back together into full words, sentences, paragraphs and chapters until the book these random parts came from is rebuilt.

That daunting process in not unlike sequencing an organism's genome, says University of Oregon biologist Eric A. Johnson, a member of the UO Institute of Molecular Biology. His lab developed a patent-pending technology for discovering differences between genomes called restriction-site associated DNA markers, or RAD. They have now shown that RAD can also be used to help put a genome sequence together.

The original RAD technique, unveiled in 2005, led to the UO spinoff company Floragenex, which uses the technology in plant genetics. More recently, Johnson and UO colleague William A. Cresko used it to identify genetic differences in threespine stickleback, a fish, which evolved separately after environmental conditions had isolated some of the saltwater fish into freshwater habitats.

Now, after three years of research, adapting it along the way as sequencing tools advanced, Johnson, Cresko and three UO colleagues provide a proof-of-principle paper in the April issue of PLoS One, a publication of the Public Library of Science. The National Institutes of Health-funded research documents that the new method, called RAD paired-end contigs, works and provides accurate sequencing results.

"The RAD sequence is a placeholder that identifies one small region of a genome," Johnson said. "We showed that this technique lets us gather together appropriate nearby sequences and piece them together." In just seconds, a section is completed, he said. In a matter of hours, he added, an entire genome's sequence emerges.

Using the book analogy, Johnson said: "We first asked if we can piece together one short sentence at a time instead of ordering all the words in the whole book at once. Next, can we put together one paragraph at a time? That's like going from, say, 1,000 letters of the genome in a row to 5,000 at a time. Here, we show that we can do this. We can put the book back together."

A RAD marker in the book analogy might be a word at the start of each sentence. Using that marker as an anchor, the rest of the words in the sentence are easily separated from all the words in the book, and then the words in the sentence are put in the right order, on an on until all the content is organized correctly, Johnson said. The end product, he added, contains few, if any, leftover or unexplained fragments, a problem occurring with current technologies that rely on clusters of computers, requiring extensive memory, to complete sequencing projects.

RAD technology can be applied to study the genetics of organisms for which genomes have not been completed, Johnson said.

The PLoS One paper detailed how RAD works on stickleback and the bacterium e-coli. Both involve small and rather simple genomes. There already is interest in its potential application in human genome sequencing, Johnson said.

At about the same time the PLoS One paper was being published, Johnson, who also is the chief scientific officer of Floragenex, was part of a company-sponsored, one-day RAD Sequencing and Genomics Symposium in Portland, Ore., on April 19. Nine researchers from five institutions (UO, Oregon State University, University of British Columbia, University of Tennessee and University of Washington) described how they are applying RAD in their sequencing projects.

"It was quite gratifying to hear them speak about this technology and how it is working for them," Johnson said.

RAD technology also is being used in a three-year project -- funded by a $1 million grant from the W.M. Keck Foundation and led by Cresko and UO colleague Hui Zong -- to identify genetic changes that occur from the formation of a single mutation to full-fledged cancer. The project could lead to a new generation of molecular diagnostics to detect cancers in their earliest stages.

Co-authors of the PLoS One paper with Johnson and Cresko were Paul D. Etter, a postdoctoral researcher, and doctoral student Jessica L. Preston, both of Johnson's lab, and Susan Bassham, a postdoctoral researcher in Cresko's lab.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Source: Eric A. Johnson, associate professor of biology, 541-346-5183, eajohnsn@uoregon.edu

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: DNA marker Floragenex PLoS One RAD technology RAD-tagging

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>