Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RAD-tagging technology is demystifying genome sequencing

27.04.2011
University of Oregon researchers document how their technique quickly puts a genome together

Take millions of puzzle pieces containing partial words and put them back together into full words, sentences, paragraphs and chapters until the book these random parts came from is rebuilt.

That daunting process in not unlike sequencing an organism's genome, says University of Oregon biologist Eric A. Johnson, a member of the UO Institute of Molecular Biology. His lab developed a patent-pending technology for discovering differences between genomes called restriction-site associated DNA markers, or RAD. They have now shown that RAD can also be used to help put a genome sequence together.

The original RAD technique, unveiled in 2005, led to the UO spinoff company Floragenex, which uses the technology in plant genetics. More recently, Johnson and UO colleague William A. Cresko used it to identify genetic differences in threespine stickleback, a fish, which evolved separately after environmental conditions had isolated some of the saltwater fish into freshwater habitats.

Now, after three years of research, adapting it along the way as sequencing tools advanced, Johnson, Cresko and three UO colleagues provide a proof-of-principle paper in the April issue of PLoS One, a publication of the Public Library of Science. The National Institutes of Health-funded research documents that the new method, called RAD paired-end contigs, works and provides accurate sequencing results.

"The RAD sequence is a placeholder that identifies one small region of a genome," Johnson said. "We showed that this technique lets us gather together appropriate nearby sequences and piece them together." In just seconds, a section is completed, he said. In a matter of hours, he added, an entire genome's sequence emerges.

Using the book analogy, Johnson said: "We first asked if we can piece together one short sentence at a time instead of ordering all the words in the whole book at once. Next, can we put together one paragraph at a time? That's like going from, say, 1,000 letters of the genome in a row to 5,000 at a time. Here, we show that we can do this. We can put the book back together."

A RAD marker in the book analogy might be a word at the start of each sentence. Using that marker as an anchor, the rest of the words in the sentence are easily separated from all the words in the book, and then the words in the sentence are put in the right order, on an on until all the content is organized correctly, Johnson said. The end product, he added, contains few, if any, leftover or unexplained fragments, a problem occurring with current technologies that rely on clusters of computers, requiring extensive memory, to complete sequencing projects.

RAD technology can be applied to study the genetics of organisms for which genomes have not been completed, Johnson said.

The PLoS One paper detailed how RAD works on stickleback and the bacterium e-coli. Both involve small and rather simple genomes. There already is interest in its potential application in human genome sequencing, Johnson said.

At about the same time the PLoS One paper was being published, Johnson, who also is the chief scientific officer of Floragenex, was part of a company-sponsored, one-day RAD Sequencing and Genomics Symposium in Portland, Ore., on April 19. Nine researchers from five institutions (UO, Oregon State University, University of British Columbia, University of Tennessee and University of Washington) described how they are applying RAD in their sequencing projects.

"It was quite gratifying to hear them speak about this technology and how it is working for them," Johnson said.

RAD technology also is being used in a three-year project -- funded by a $1 million grant from the W.M. Keck Foundation and led by Cresko and UO colleague Hui Zong -- to identify genetic changes that occur from the formation of a single mutation to full-fledged cancer. The project could lead to a new generation of molecular diagnostics to detect cancers in their earliest stages.

Co-authors of the PLoS One paper with Johnson and Cresko were Paul D. Etter, a postdoctoral researcher, and doctoral student Jessica L. Preston, both of Johnson's lab, and Susan Bassham, a postdoctoral researcher in Cresko's lab.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Source: Eric A. Johnson, associate professor of biology, 541-346-5183, eajohnsn@uoregon.edu

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

Further reports about: DNA marker Floragenex PLoS One RAD technology RAD-tagging

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>