Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the Brakes on Drug-Resistant HIV

17.09.2010
Probing Multidrug Resistance and Protein--Ligand Interactions with Oxatricyclic Designed Ligands in HIV-1 Protease Inhibitors

HIV-1 protease inhibitors were added as a component of highly active antiretroviral therapy (HAART) in the mid-1990s, and have played a key role in that treatment regimen ever since.

However, the emergence of multidrug-resistant HIV strains requires the discovery and design of conceptually new therapeutics for the treatment of patients infected with multidrug-resistant HIV strains. In addressing this issue, the research group of Arun K. Ghosh at Purdue University developed stereochemically defined, fused tetrahydrofuran (THF) ligands based on the X-ray crystal structures of HIV--ligand complexes. The results of this project, carried out with collaborators at Georgia State University, Kumamoto University in Japan, and the National Cancer Institute, are reported in the journal ChemMedChem.

The fused THF ligands contain five contiguous chiral centers, and were synthesized in optically active form by enzymatic resolution, radical cyclization, and stereoselective reduction as key steps. The resulting HIV-1 protease inhibitors are designed to interact specifically with protein backbone atoms by hydrogen bond formation and by filling the hydrophobic active site pocket. One compound in particular, GRL-0519A, shows remarkable protease inhibition and antiviral activity. Moreover, this compound is extremely potent against various multidrug-resistant HIV-1 variants, with IC50 values ranging from 0.6 to 4.3 nanomolar. In fact, GRL-0519A is at least 10-fold better than darunavir, an FDA-approved HIV protease inhibitor that emerged from previous research by Ghosh's group.

Author: Arun K. Ghosh, Purdue University, West Lafayette, IN (USA), http://www.chem.purdue.edu/ghosh/

Title: Probing Multidrug-Resistance and Protein–Ligand Interactions with Oxatricyclic Designed Ligands in HIV-1 Protease Inhibitors

ChemMedChem, Permalink to the article: http://dx.doi.org/10.1002/cmdc.201000318

Arun K. Ghosh | ChemMedChem
Further information:
http://www.chem.purdue.edu/ghosh/
http://pressroom.chempubsoc.eu
http://dx.doi.org/10.1002/cmdc.201000318

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>