Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting bacterial antibiotic resistance into reverse

26.04.2010
The use of antibiotics to treat bacterial infections causes a continual and vicious cycle in which antibiotic treatment leads to the emergence and spread of resistant strains, forcing the use of additional drugs leading to further multi-drug resistance.

But what if it doesn't have to be that way?

In a presentation at the American Society for Biochemistry and Molecular Biology's annual meeting, titled "Driving backwards the evolution of antibiotic resistance," Harvard researcher Roy Kishony will discuss his recent work showing that some drug combinations can stop or even reverse the normal trend, favoring bacteria that do not develop resistance. The talk will be in Anaheim Convention Center Room 304D, on Sunday April 25 at 3:30 pm PST.

"Normally, when clinicians administer a multi-drug regimen, they do so because the drugs act synergistically and speed up bacterial killing," Kishony explains. However, Kishony's laboratory has focused on the opposite phenomenon: antibiotic interactions that have a suppressive effect, namely when the combined inhibitory effect of using the two drugs together is weaker than that of one of the drugs alone.

Kishony and his team identified the suppressive interaction in E. coli, discovering that a combination of tetracycline – which prevents bacteria from making proteins – and ciprofloxacin – which prevents them from copying their DNA – was not as good as slowing down bacterial growth as one of the antibiotics (ciprofloxacin) by itself.

Kishony notes that this suppressive interaction can halt bacterial evolution, because any bacteria that develop a resistance to tetracycline will lose its suppressive effect against ciprofloxacin and die off; therefore, in a population the bacteria that remain non-resistant become the dominant strain.

While such a weakened antibiotic combination is not great from a clinical standpoint, the Kishony lab is using this discovery to set up a drug screening system that could identify novel drug combinations that could hinder the development of resistance but still act highly effectively. "Typical drug searches look for absolute killing effects, and choose the strongest candidates," he says. "Our approach is going to ask how these drugs affect the competition between resistant versus sensitive bacterial strains."

To develop such a screen, Kishony and his group first had to figure how this unusual interaction works.

"Fast growing bacteria like E. coli are optimized to balance their protein and DNA activity to grow and divide as quickly as the surrounding environment allows," Kishony explains. "However, when we exposed E. coli to the ciprofloxacin, we found that their optimization disappeared."

"We expected that since the bacteria would have more difficulty copying DNA, they would slow down their protein synthesis, too," Kishony continues. "But they didn't; they kept churning out proteins, which only added to their stress." However, once they added the tetracycline and protein synthesis was also reduced in the E. coli, they actually grew better than before. They then confirmed the idea that production of ribosomes - the cell components that make proteins - is too high under DNA stress by engineering E. coli strains that have fewer ribosomes than regular bacteria. While these mutants grew a more slowly in normal conditions, they grew faster under ciprofloxacin inhibition of DNA synthesis.

Kishony notes that their preliminary work on the development of a screen for drugs that put resistance in a disadvantage looks promising, and hopes that it would lead to the identification of novel drugs that select against resistance.

NOTE TO EDITORS: The American Society for Biochemistry and Molecular Biology annual meeting is part of the Experimental Biology 2010 conference that will be held April 24-28, 2010 at the Anaheim Convention Center. The press is invited to attend or to make an appointment to interview Dr. Kishony. Please contact Nicole Kresge at 202.316.5447 or nkresge@asbmb.org.

The American Society for Biochemistry and Molecular Biology (www.asbmb.org) is a nonprofit scientific and educational organization with over 12,000 members. Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of scientific and educational journals: the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific workforce.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>