Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

28.02.2014

Researchers at the Massachusetts General Hospital (MGH)/Harvard Medical School, Drs. Beste Kinikoglu and Yawei Kong, led by Dr. Eric C. Liao, cultured and characterized for the first time multipotent neural crest cells isolated from zebrafish embryos.

This important study is reported in the February 2014 issue of Experimental Biology and Medicine. Neural crest is a unique cell population induced at the lateral border of the neural plate during embryogenesis and vertebrate development depends on these multipotent migratory cells.

Defects in neural crest development result in a wide range of malformations, such as cleft lip and palate, and diseases, such as melanoma. Dr. Liao's laboratory uses zebrafish as a model vertebrate to study the genetic basis of neural crest related craniofacial malformations. Zebrafish has long been used to study early development and recently emerged as a model to study disease.

"Development of in vitro culture of neural crest cells and reproducible functional assays will provide a valuable and complementary approach to the in vivo experiments in zebrafish" said Dr. Eric C. Liao, senior author of the study and an Assistant Professor of Surgery at MGH, and Principal Faculty at the Harvard Stem Cell Institute.

The team took advantage of the sox 10 reporter transgenic model to enrich and isolate the neural crest cells (NCCs), which were subsequently cultured under optimized culture conditions. Cultured NCCs were found to express major neural crest lineage markers such as sox10, sox9a, hnk1, p75, dlx2a, and pax3, and the pluripotency markers c-myc and klf4.

The cells could be further differentiated into multiple neural crest lineages, contributing to neurons, glial cells, smooth muscle cells, melanocytes, and chondrocytes. Using the functional cell behavior assays that they developed, the team was able to assess the influence of retinoic acid, an endogenously synthesized, powerful, morphogenetic molecule, on NCC behavior.

This study showed that retinoic acid had a profound effect on NCC morphology and differentiation, significantly inhibited proliferation and enhanced cell migration. The data implicate NCCs as a target cell population for retinoic acid and suggest that it plays multiple critical roles in NCC development.

"We hope that our novel neural crest system will be useful to gain mechanistic understanding of NCC development and for cell-based high-throughput drug screening applications" said Dr. Beste Kinikoglu, a postdoctoral fellow in Dr. Liao's laboratory and the study's first author. Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Liao and colleagues have provided the first zebrafish embryo derived NCC pure population in vitro model for the study of neural crest development. I believe that this will be a valuable tool for this purpose".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903. Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit http://www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.sagepub.com/.

Eric C. Liao | EurekAlert!

Further reports about: Biology Medicine Society acid assays crest culture pluripotency retinoic zebrafish

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>