Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How pufferfish meditate magnesium to survive

27.08.2013
The gene mechanism responsible for altering magnesium ion secretion in fish is uncovered by scientists at Tokyo Tech. The details are described in the August 2013 issue of Tokyo Institute of Technology Bulletin

The gene mechanism responsible for altering magnesium ion secretion in fish is uncovered by scientists at Tokyo Tech. The details are described in the August 2013 issue of Tokyo Institute of Technology Bulletin: http://www.titech.ac.jp/bulletin/


Fig. 1 The team used linear and cyclic block copolymers to create flower-shaped micelles. The cyclic-based micelles withstood considerably higher temperatures and salinity levels, and could have numerous applications in industry and green chemistry.


Hypothetical model for renal divalent ion excretion in marine teleost

Scientists at Tokyo Institute of Technology collaborate colleagues at Japan’s Shimonoseki Academy of Marine Science and Mayo Clinic College of Medicine, Minnasota, USA, to uncovered the molecular mechanisms behind Mg2+ secretion in fresh and seawater Takifugu pufferfish species.

The bodily functions of creatures that live in aquatic environments are affected by the presence of ions of different elements in the water. Bodies naturally absorb and retain ions as essential nutrients, but an excess of any one ion in the body can be damaging.

The magnesium ion Mg2+ is the second most abundant cation in seawater. Both freshwater and seawater fish maintain a certain level of Mg2+ in the plasma in their bodies, and it has long been known that seawater fish secrete Mg2+ into their urine in order to avoid an excess of absorbed Mg2+ from their surroundings. However, certain species of fish are capable of living in both salt and freshwater conditions, and how they alter Mg2+ secretion in their bodies accordingly is not well understood.

Now, Akira Kato and co-workers at Tokyo Institute of Technology, together with researchers from Japan’s Shimonoseki Academy of Marine Science and Mayo Clinic College of Medicine, Minnasota, USA, have uncovered the molecular mechanisms behind Mg2+ secretion in fresh and seawater Takifugu pufferfish species (1).

“For freshwater fish, Mg2+ is an important nutrient which should be retained if excess Mg2+ is not absorbed from food,” explains Kato. “Seawater contains around 30 times more Mg2+ than the blood of seawater fish. If seawater fish cannot excrete excess Mg2+, they face hypermagnesemia which causes failure of normal tissue functions in the nerves, muscles, and heart.”

Open genome databases enabled Kato and his team to prepare a list of pufferfish genes that have homology to any known Mg2+ transporting systems in bacteria, plants, and mammals. Through this mammoth task, they pinpointed a gene called Slc41a1 that encodes ion-carrier proteins in other species and bacteria. Gene expression analyses showed that Slc41a1 genes are highly expressed in the duct system of the kidneys in pufferfish.

The team then compared the renal and intestinal expressions of Slc41a1 in seawater pufferfish Takifugu rubripes and the closely related euryhaline pufferfish Takifugu obscurus in both seawater and freshwater environments.

“We discovered that Slc41a1 expression was up-regulated when the fish were moved from freshwater to seawater conditions,” explains Kato. Using immunohistochemistry techniques, the researchers proved that Slc41a1 is found in vacuoles (organelles) in the kidney and mediates Mg2+ movement from inside to outside cells. This secretion mechanism allows the excess ions to be flushed from the body in the urine.

“The molecular study of vacuolar Mg2+ secretion in the kidneys of seawater fish has just begun,” states Kato. “We need to identify other components that support the function of Mg2+ transporter gene Slc41a1. We also need to confirm if similar systems are generally used by many different organisms, or if this method of secretion has specifically evolved in fish.”

Further information:

Miwako Kato and Yukiko Tokida, Center for Public Information
Tokyo Institute of Technology, 2-12-1,
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: publication@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975, Fax: +81-3-5734-3661
About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Website: http://www.titech.ac.jp/english/

Journal information

1. Z. Islam et al. Identification and proximal tubular localization of the Mg2+ transporter, Slc41a1, in a seawater fish. Am J Physiol Regul Integr Comp Physiol 305 (2013).

doi: 10.1152/ajpregu.00507.2012

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/bulletin/
http://www.researchsea.com

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>