Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How pufferfish meditate magnesium to survive

27.08.2013
The gene mechanism responsible for altering magnesium ion secretion in fish is uncovered by scientists at Tokyo Tech. The details are described in the August 2013 issue of Tokyo Institute of Technology Bulletin

The gene mechanism responsible for altering magnesium ion secretion in fish is uncovered by scientists at Tokyo Tech. The details are described in the August 2013 issue of Tokyo Institute of Technology Bulletin: http://www.titech.ac.jp/bulletin/


Fig. 1 The team used linear and cyclic block copolymers to create flower-shaped micelles. The cyclic-based micelles withstood considerably higher temperatures and salinity levels, and could have numerous applications in industry and green chemistry.


Hypothetical model for renal divalent ion excretion in marine teleost

Scientists at Tokyo Institute of Technology collaborate colleagues at Japan’s Shimonoseki Academy of Marine Science and Mayo Clinic College of Medicine, Minnasota, USA, to uncovered the molecular mechanisms behind Mg2+ secretion in fresh and seawater Takifugu pufferfish species.

The bodily functions of creatures that live in aquatic environments are affected by the presence of ions of different elements in the water. Bodies naturally absorb and retain ions as essential nutrients, but an excess of any one ion in the body can be damaging.

The magnesium ion Mg2+ is the second most abundant cation in seawater. Both freshwater and seawater fish maintain a certain level of Mg2+ in the plasma in their bodies, and it has long been known that seawater fish secrete Mg2+ into their urine in order to avoid an excess of absorbed Mg2+ from their surroundings. However, certain species of fish are capable of living in both salt and freshwater conditions, and how they alter Mg2+ secretion in their bodies accordingly is not well understood.

Now, Akira Kato and co-workers at Tokyo Institute of Technology, together with researchers from Japan’s Shimonoseki Academy of Marine Science and Mayo Clinic College of Medicine, Minnasota, USA, have uncovered the molecular mechanisms behind Mg2+ secretion in fresh and seawater Takifugu pufferfish species (1).

“For freshwater fish, Mg2+ is an important nutrient which should be retained if excess Mg2+ is not absorbed from food,” explains Kato. “Seawater contains around 30 times more Mg2+ than the blood of seawater fish. If seawater fish cannot excrete excess Mg2+, they face hypermagnesemia which causes failure of normal tissue functions in the nerves, muscles, and heart.”

Open genome databases enabled Kato and his team to prepare a list of pufferfish genes that have homology to any known Mg2+ transporting systems in bacteria, plants, and mammals. Through this mammoth task, they pinpointed a gene called Slc41a1 that encodes ion-carrier proteins in other species and bacteria. Gene expression analyses showed that Slc41a1 genes are highly expressed in the duct system of the kidneys in pufferfish.

The team then compared the renal and intestinal expressions of Slc41a1 in seawater pufferfish Takifugu rubripes and the closely related euryhaline pufferfish Takifugu obscurus in both seawater and freshwater environments.

“We discovered that Slc41a1 expression was up-regulated when the fish were moved from freshwater to seawater conditions,” explains Kato. Using immunohistochemistry techniques, the researchers proved that Slc41a1 is found in vacuoles (organelles) in the kidney and mediates Mg2+ movement from inside to outside cells. This secretion mechanism allows the excess ions to be flushed from the body in the urine.

“The molecular study of vacuolar Mg2+ secretion in the kidneys of seawater fish has just begun,” states Kato. “We need to identify other components that support the function of Mg2+ transporter gene Slc41a1. We also need to confirm if similar systems are generally used by many different organisms, or if this method of secretion has specifically evolved in fish.”

Further information:

Miwako Kato and Yukiko Tokida, Center for Public Information
Tokyo Institute of Technology, 2-12-1,
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: publication@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975, Fax: +81-3-5734-3661
About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.

Website: http://www.titech.ac.jp/english/

Journal information

1. Z. Islam et al. Identification and proximal tubular localization of the Mg2+ transporter, Slc41a1, in a seawater fish. Am J Physiol Regul Integr Comp Physiol 305 (2013).

doi: 10.1152/ajpregu.00507.2012

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/bulletin/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>