Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The public looks at synthetic biology -- cautiously

09.09.2010
National survey finds support for research but with oversight and greater attention to risks

Synthetic biology—defined as the design and construction of new biological parts, devices, and systems or re-design of existing natural biological systems for useful purposes—holds enormous potential to improve everything from energy production to medicine, with the global market projected to reach $4.5 billion by 2015. But what does the public know about this emerging field, and what are their hopes and concerns?

A new poll of 1,000 U.S. adults conducted by Hart Research Associates and the Synthetic Biology Project at the Woodrow Wilson Center finds that two-thirds of Americans think that synthetic biology should move forward, but with more research to study its possible effects on humans and the environment, while one-third support a ban until we better understand its implications and risks. More than half of Americans believe the federal government should be involved in regulating synthetic biology.

"The survey clearly shows that much more attention needs to be paid to addressing biosafety and biosecurity risks," said David Rejeski, Director of the Synthetic Biology Project. "In addition, government and industry need to engage the public about the science and its applications, benefits, and risks."

The poll findings reveal that the proportion of adults who say they have heard a lot or some about synthetic biology has almost tripled in three years, (from 9 percent to 26 percent). By comparison, self-reported awareness of nanotechnology increased from 24 percent to 34 percent during the same three-year period.

Although the public supports continued research in the area of synthetic biology, it also harbors concerns, including 27 percent who have security concerns (concerns that the science will be used to make harmful things), 25 percent who have moral concerns, and a similar proportion who worry about negative health consequences for humans. A smaller portion, 13 percent, worries about possible damage to the environment.

"The survey shows that attitudes about synthetic biology are not clear-cut and that its application is an important factor in shaping public attitudes towards it," said Geoff Garin, President of Hart Research. Six in 10 respondents support the use of synthetic biology to produce a flu vaccine. In contrast, three-fourths of those surveyed have concerns about its use to accelerate the growth of livestock to increase food production. Among those for whom moral issues are the top concern, the majority views both applications in a negative light.

The findings come from a nationwide telephone survey of 1,000 adults and has a margin of error of ± 3.1 percentage points. This is the fifth year that Hart Research Associates has conducted a survey to gauge public opinion about nanotechnology and/or synthetic biology for the Woodrow Wilson International Center for Scholars.

The report can be found at: www.synbioproject.org

The Woodrow Wilson International Center for Scholars of the Smithsonian Institution was established by Congress in 1968 and is headquartered in Washington, D.C. It is a nonpartisan institution, supported by public and private funds and engaged in the study of national and world affairs.

Todd Kuiken | EurekAlert!
Further information:
http://www.wilsoncenter.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>