Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The public looks at synthetic biology -- cautiously

National survey finds support for research but with oversight and greater attention to risks

Synthetic biology—defined as the design and construction of new biological parts, devices, and systems or re-design of existing natural biological systems for useful purposes—holds enormous potential to improve everything from energy production to medicine, with the global market projected to reach $4.5 billion by 2015. But what does the public know about this emerging field, and what are their hopes and concerns?

A new poll of 1,000 U.S. adults conducted by Hart Research Associates and the Synthetic Biology Project at the Woodrow Wilson Center finds that two-thirds of Americans think that synthetic biology should move forward, but with more research to study its possible effects on humans and the environment, while one-third support a ban until we better understand its implications and risks. More than half of Americans believe the federal government should be involved in regulating synthetic biology.

"The survey clearly shows that much more attention needs to be paid to addressing biosafety and biosecurity risks," said David Rejeski, Director of the Synthetic Biology Project. "In addition, government and industry need to engage the public about the science and its applications, benefits, and risks."

The poll findings reveal that the proportion of adults who say they have heard a lot or some about synthetic biology has almost tripled in three years, (from 9 percent to 26 percent). By comparison, self-reported awareness of nanotechnology increased from 24 percent to 34 percent during the same three-year period.

Although the public supports continued research in the area of synthetic biology, it also harbors concerns, including 27 percent who have security concerns (concerns that the science will be used to make harmful things), 25 percent who have moral concerns, and a similar proportion who worry about negative health consequences for humans. A smaller portion, 13 percent, worries about possible damage to the environment.

"The survey shows that attitudes about synthetic biology are not clear-cut and that its application is an important factor in shaping public attitudes towards it," said Geoff Garin, President of Hart Research. Six in 10 respondents support the use of synthetic biology to produce a flu vaccine. In contrast, three-fourths of those surveyed have concerns about its use to accelerate the growth of livestock to increase food production. Among those for whom moral issues are the top concern, the majority views both applications in a negative light.

The findings come from a nationwide telephone survey of 1,000 adults and has a margin of error of ± 3.1 percentage points. This is the fifth year that Hart Research Associates has conducted a survey to gauge public opinion about nanotechnology and/or synthetic biology for the Woodrow Wilson International Center for Scholars.

The report can be found at:

The Woodrow Wilson International Center for Scholars of the Smithsonian Institution was established by Congress in 1968 and is headquartered in Washington, D.C. It is a nonpartisan institution, supported by public and private funds and engaged in the study of national and world affairs.

Todd Kuiken | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>