Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four, Three, Two, One . . . Pterosaurs Have Lift Off!

08.01.2009
Pterosaurs have long suffered an identity crisis. Pop culture heedlessly — and wrongly — lumps these extinct flying lizards in with dinosaurs. Even paleontologists assumed that because the creatures flew, they were birdlike in many ways, such as using only two legs to take flight.

Now comes what is believed to be first-time evidence that launching some 500 pounds of reptilian heft into flight required pterosaurs to use four limbs: two were ultra-strong wings which, when folded and balanced on a knuckle, served as front “legs” that helped the creature to walk — and leap.


Illustration by Mark Witton.
A modern-day man and giraffe, drawn to scale, flank the extinct pterosaur known as Hatzegotpteryx. Unlike birds, pterosaurs used four legs to launch themselves into flight, according to new research.

Publishing in Zitteliana, Michael B. Habib, M.S., of the Center for Functional Anatomy and Evolution at the Johns Hopkins University School of Medicine, reports his comparison of bone strength in the limbs of pterosaurs to that of birds and concludes that pterosaurs had much stronger “arms” than legs. The reverse is true of birds.

“We’ve all seen birds take off, so that’s what’s most familiar,” says Habib. “But with pterosaurs, extinct 65 million years and with a fossil history that goes back 250 million years, what’s familiar isn’t relevant.”

A supersized glitch is inherent in the traditional bipedal launch model, Habib notes: “If a creature takes off like a bird, it should only be able to get as big as the biggest bird.”

Birds use legs to launch, wings to flap. They don’t get launch power from wings or flight power from legs. In fact, when a bird is aloft, its legs become payload, or cargo. The muscle on the two back limbs that provides the power to launch must be carried and therefore limits size. Released of that handicap by employing all four legs to launch, giant pterosaurs could fly despite the fact that they were roughly the same size and shape as modern-day giraffes.

“The difference between pterosaurs and birds with regard to critical mechanical properties is very, very large,” Habib says, especially when you’re talking about the big pterosaurs; as the size gets bigger, the difference gets bigger too.”

For example, the wings of these fantastic hairy reptiles, most notably those of Quetzalcoatlus northropi, which spanned to an impressive 35 feet when the creatures were aloft, propelled the creatures into the air during take-offs that Habib describes as leap-frogging long-jumps: “Pterosaurs had long, huge front limbs, so no partner was required. Then, with wings snapping out, off they’d fly.”

Using computer scans to obtain cross-sectional images and geometric data for 155 bird specimens representing 20 species, Habib calculated the strengths of bones in bird limbs and compared these to three species of pterosaurs, the bones strengths of which he calculated using measurements from previously published sources. Structural strength, taking into account length and diameter, among other things, is a measure of how much force a bone can take before it fractures.

Habib also spent time crunching the numbers using the old, bipedal launch model and simply couldn’t find a mathematical solution that would enable the largest of the pterosaurs — using hind legs alone — to launch at all.

“But using all four legs, it takes less than a second to get off of flat ground, no wind, no cliffs,” he said. “This was a good thing to be able to do if you lived in the late Cretaceous period and there were hungry tyrannosaurs wandering around.”

It stands to reason that a large-bodied animal needing to produce lots of power at take-off would use four legs instead of two, Habib says: “We put V8 engines in our biggest, heaviest cars, not V-4s, like the one in my Camry.”

Assumption and convention — rather than reason or data — held sway for centuries, ever since the classical bipedal model of pterosaur take-off was first championed, he notes.

The research was funded by the Jurassic Foundation. Habib, of Johns Hopkins, is the sole author of the paper.

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.hopkinsmedicine.org/fae/
http://www.palmuc.de/zitteliana/
http://www.hopkinsmedicine.org/Press_releases/2009/01_06_08.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>