Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four, Three, Two, One . . . Pterosaurs Have Lift Off!

08.01.2009
Pterosaurs have long suffered an identity crisis. Pop culture heedlessly — and wrongly — lumps these extinct flying lizards in with dinosaurs. Even paleontologists assumed that because the creatures flew, they were birdlike in many ways, such as using only two legs to take flight.

Now comes what is believed to be first-time evidence that launching some 500 pounds of reptilian heft into flight required pterosaurs to use four limbs: two were ultra-strong wings which, when folded and balanced on a knuckle, served as front “legs” that helped the creature to walk — and leap.


Illustration by Mark Witton.
A modern-day man and giraffe, drawn to scale, flank the extinct pterosaur known as Hatzegotpteryx. Unlike birds, pterosaurs used four legs to launch themselves into flight, according to new research.

Publishing in Zitteliana, Michael B. Habib, M.S., of the Center for Functional Anatomy and Evolution at the Johns Hopkins University School of Medicine, reports his comparison of bone strength in the limbs of pterosaurs to that of birds and concludes that pterosaurs had much stronger “arms” than legs. The reverse is true of birds.

“We’ve all seen birds take off, so that’s what’s most familiar,” says Habib. “But with pterosaurs, extinct 65 million years and with a fossil history that goes back 250 million years, what’s familiar isn’t relevant.”

A supersized glitch is inherent in the traditional bipedal launch model, Habib notes: “If a creature takes off like a bird, it should only be able to get as big as the biggest bird.”

Birds use legs to launch, wings to flap. They don’t get launch power from wings or flight power from legs. In fact, when a bird is aloft, its legs become payload, or cargo. The muscle on the two back limbs that provides the power to launch must be carried and therefore limits size. Released of that handicap by employing all four legs to launch, giant pterosaurs could fly despite the fact that they were roughly the same size and shape as modern-day giraffes.

“The difference between pterosaurs and birds with regard to critical mechanical properties is very, very large,” Habib says, especially when you’re talking about the big pterosaurs; as the size gets bigger, the difference gets bigger too.”

For example, the wings of these fantastic hairy reptiles, most notably those of Quetzalcoatlus northropi, which spanned to an impressive 35 feet when the creatures were aloft, propelled the creatures into the air during take-offs that Habib describes as leap-frogging long-jumps: “Pterosaurs had long, huge front limbs, so no partner was required. Then, with wings snapping out, off they’d fly.”

Using computer scans to obtain cross-sectional images and geometric data for 155 bird specimens representing 20 species, Habib calculated the strengths of bones in bird limbs and compared these to three species of pterosaurs, the bones strengths of which he calculated using measurements from previously published sources. Structural strength, taking into account length and diameter, among other things, is a measure of how much force a bone can take before it fractures.

Habib also spent time crunching the numbers using the old, bipedal launch model and simply couldn’t find a mathematical solution that would enable the largest of the pterosaurs — using hind legs alone — to launch at all.

“But using all four legs, it takes less than a second to get off of flat ground, no wind, no cliffs,” he said. “This was a good thing to be able to do if you lived in the late Cretaceous period and there were hungry tyrannosaurs wandering around.”

It stands to reason that a large-bodied animal needing to produce lots of power at take-off would use four legs instead of two, Habib says: “We put V8 engines in our biggest, heaviest cars, not V-4s, like the one in my Camry.”

Assumption and convention — rather than reason or data — held sway for centuries, ever since the classical bipedal model of pterosaur take-off was first championed, he notes.

The research was funded by the Jurassic Foundation. Habib, of Johns Hopkins, is the sole author of the paper.

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.hopkinsmedicine.org/fae/
http://www.palmuc.de/zitteliana/
http://www.hopkinsmedicine.org/Press_releases/2009/01_06_08.html

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>