Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four New Psoriasis ‘Hotspots’ Identified by Geneticists

20.10.2010
Scientists at the University of Michigan Heath System and their collaborators have found four new DNA “hotspots” that may one day help guide new treatments for psoriasis, one of the most common autoimmune diseases in the country.

Using cutting-edge methods to peer into the hidden genetic underpinnings of the disabling and disfiguring disease, the research, published in Nature Genetics, further maps the as-yet unknown territories of psoriasis and psoriatic arthritis.

The findings could lead to new drug targets and tailored treatments for the skin disease, says James T. Elder, M.D., Ph.D., the Kirk D. Wuepper Professor of Molecular Genetic Dermatology and lead investigator on the study, which included researchers from the Department of Dermatology and School of Public Health.

“This is a hot topic in genetics these days,” Elder says. “Even when you add up all the genes that have been found around the world so far, they only account for about 40 percent of the genetic liability to psoriasis. The question among geneticists continues to be, ‘Where is the dark matter?’ ”

The new research builds on past work by the U-M team, whose discoveries have helped to unveil the hereditary factors of the disease and provide scientists with a better understanding of psoriasis’ relationship to other autoimmune diseases, such as Crohn’s disease, rheumatoid arthritis and lupus.

So far, research worldwide has linked 25 genes to psoriasis, which has a strong hereditary component. Including the new discoveries, Elder’s team was involved in finding more than half of them.

Two of the four new susceptibility loci – or “hotspots” – were strongly linked to psoriatic arthritis, a painful and destructive form of arthritis that affects about 1 in 4 psoriasis patients, Elder says.

The roughly 7.5 million Americans with psoriasis also have a higher risk of dying from related cardiovascular problems.

Once a full catalog of psoriasis genes has been identified, scientists hope to generate a “psoriasis gene profile” that can predict one’s risk of developing the disease and pave the way for innovative treatments. Current treatments, including different types of immunosuppressive agents, aren’t always effective and can cause serious side effects – though a new drug called Stelara (ustekinumab), which targets one of the genes they discovered, has been giving patients months-long relief, Elder says.

U-M Professor of Biostatistics Goncalo R. Abecasis, D. Phil, was instrumental in designing software and statistical methods to analyze more than 6 million genetic variants from more than 4,000 people.

“It was a pretty daunting task,” Abecasis says. “We looked in greater detail at genetic variation than is typical so that we can understand the biology behind psoriasis and build better drugs.”

Methodology: The U-M led, multi-center, international study analyzed data from two recent psoriasis genome-wide association studies involving more than 4,300 individuals, with and without the disease. Those findings were followed up in a three-stage replication study involving more than 8,700 people. The newly identified loci include one at NOS2, one at FBXL19, one near PSMA6-NFKBIA, and one near TRAF3IP2. U-M led the research in the discovery of three of the loci. The TRAF3IP2 locus was reported in a second paper to be published in the same issue of Nature Genetics, in which Elder’s collaborators from the University of Kiel in Germany took a leading role.

Additional authors: Philip E. Stuart, Rajan P. Nair, Trilokraj Tejasvi, Johann E. Gudjonsson, Jun Ding, Yun Li, Robert Ike, John J. Voorhees, University of Michigan; Eva Ellinghaus, Andre Franke, University of Kiel, Germany; Stephan Weidinger, Bernadette Eberlein, University of Munich, Germany; Christian Gieger, H. Erich Wichmann, Ludwig-Maximilians University, Germany; Manfred Kunz, University of Lübeck, Germany; Gerald G. Krueger, University of Utah; Anne M. Bowcock, Washington University at St. Louis; Ulrich Mrowietz, Michael Weichenthal, University of Kiel, Germany; Henry W. Lim, Henry Ford Hospital, Detroit; Proton Rahman, Memorial University (Canada); Dafna D.Gladman, University of Toronto, Canada.

Funding: The research was supported by grants from the National Institutes of Health, Ann Arbor Veterans Affairs Hospital, German Ministry of Education and Research, and the Canadian Institutes of Health Research.

Disclosure: U-M has filed for patent protection and is actively engaged in finding a commercial partner who can help bring the developments to market.

Reference: Nature Genetics, published online Oct. 17, 2010. Print publication pending.

Resources:
Psoriasis Genetics Study at U-M, https://www.derm.med.umich.edu/home.html
U-M Department of Dermatology, http://www.med.umich.edu/derm/index.shtml
National Psoriasis Foundation, http://www.psoriasis.org/

Ian Demsky | Newswise Science News
Further information:
http://www.psoriasis.org/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>