Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proteins Pull Together as Cells Divide


Group dynamics, not star proteins, drive mechanics of crucial cell process

Like a surgeon separating conjoined twins, cells have to be careful to get everything just right when they divide in two. Otherwise, the resulting daughter cells could be hobbled, particularly if they end up with too many or two few chromosomes.

Credit: Janet Effler/Johns Hopkins Medicine

Caption: A cleavage furrow begins to separate a dividing cell into daughter cells.

Successful cell division hangs on the formation of a dip called a cleavage furrow, a process that has remained mysterious. Now, researchers at Johns Hopkins have found that no single molecular architect directs the cleavage furrow’s formation; rather, it is a robust structure made of a suite of team players.

The finding is detailed in the March 2 issue of the journal Current Biology.

“We assumed the cleavage furrow was like a finely tuned Swiss watch, in that breaking a key component would bring it to a stop — we just didn’t know what that component was,” says Douglas Robinson, Ph.D., a professor of cell biology in the Institute for Basic Biomedical Sciences at the Johns Hopkins University School of Medicine, borrowing an analogy from the late Ray Rappaport, the founding father of modern cell division research. “But it turned out to be more like an old Maine fishing boat: almost indestructible.”

Cell division is how new cells form, both during development and throughout an organism’s life. To learn more about this process, Robinson and graduate student Vasudha Srivastava took the one-celled amoeba Dictyostelium as their model. One by one, they disabled genes for proteins known to be involved in the cleavage furrow to see whether doing so disrupted its assembly. But no matter which protein was taken out, other proteins still self-assembled to form the cleavage furrow.

“It’s not a house of cards — pulling out one protein doesn’t bring it down,” Srivastava says. Instead, she and Robinson found a robust process tuned not only by chemical signaling, but also by mechanical processes.

That makes sense, Robinson says, given the importance of the cleavage furrow to life itself. “Cells need to get division right in order to avoid ending up with the wrong number of chromosomes, which can be fatal,” he says.

The study was funded by the Hay Graduate Fellowship Fund, the National Institute for General Medical Sciences (grant number GM66817), the National Institutes of Health Office of the Director (grant number S10 OD016374) and the Johns Hopkins Physical Sciences-Oncology Center.

Contact Information
Media Contacts: Shawna Williams; 410-955-8236;
Vanessa McMains; 410-502-9410;
Catherine Kolf; 443-287-2251;

Shawna Williams | newswise

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>