Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins find their way with address label and guide

22.02.2011
Most newly produced proteins in a cell need to be transported to the proper place before they can be put to work. For proteins to find their way, they have a built-in signal linked to them, a kind of address label. Moreover, they are helped by a particle that guides them to the cell membrane. In a new study published in the journal Nature Structural and Molecular Biology, researchers at Umeå University in Sweden show how this interaction works.

Calculations indicate that each human cell contains roughly a billion protein molecules. In other words, it's crowded inside the cell, and order must be maintained. What's more, newly generated proteins often need to be transported from the place they were produced to the place they are to perform their tasks.

These proteins have a kind of address label, a signal sequence, that specifies what place inside or outside the cell they need to be transported to. This transport must function flawlessly if order is to be maintained in the cell, but also for the cell to be able to communicate with its surroundings. If a protein winds up in the wrong place, it can lead to serious disorders like cystic fibrosis.

The capacity to transport proteins in most cases is directly linked to the function of the SRP, the signal-recognizing particle. The SRP binds to the signal sequence and guides it and the attached protein to the cell membrane. A key question for these researchers has been how the interaction between the signal sequence and SRP works in detail.

The Umeå scientists have managed to create a detailed picture of the first step in this protein transport by studying a complex of a signal sequence that is bound to the SRP. The technology they used is called x-ray crystallography. The group has shown the basic structure of the SRP in several previous studies SRP. Thanks to these studies, they were now able to directly compare the SRP structure with and without the guiding signal sequence.

”The structural changes were considerably greater than what was previously predicted. They provide us with detailed explanations of what role SRPs play in protein transport. These structural specifications can also serve as a model of how SRPs function at various levels during protein transport," explains Elisabeth Sauer-Eriksson, professor at the Department of Chemistry.

Now these researchers are moving on to try to investigate the next transport mechanism. For instance, they want to answer questions about what prompts the bound signal sequence to let go of the SRP and how the signal sequence, and the protein it is attached to, can make its way through the membrane.

The scientists who carried out the study are part of Umeå University's strong research environment "biological chemistry" and the Umeå Centre for Microbial Research, UCMR. Funding for the research project is provided by the Swedish Research Council, UCMR, and the Kempe Foundations.

About SRP
SRP is a ribonucleotide protein complex. SRP is highly conserved in nature and exists in all living organisms, which indicates that it plays a fundamental role in the structure and function of the cell.

Original title: Structural basis of signal-sequence recognition by the signal recognition particle

Authors: Tobias Hainzl, Shenghua Huang, Gitte Meriläinen, Kristoffer Brännström, and Elisabeth Sauer-Eriksson

For further information, please contact:
Tobias Hainzl Telephone: +46 (0)90-786 5924 E-mail: tobias.hainzl@chem.umu.se
Elisabeth Sauer-Eriksson Telephone: +46 (0)90-786 5923 Mobile phone: +46 (0)70-6335320 E-mail: elisabeth.sauer-eriksson@chem.umu.se

Karin Wikman | idw
Further information:
http://www.vr.se
http://www.nature.com/nsmb/journal/vaop/ncurrent/abs/nsmb.1994.html

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>