Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Need Chaperones

07.01.2011
Freiburg Biochemist Describes Newly Discovered Processes in Production of Proteins in „Nature“

Young unmarried girls used to be accompanied by chaperones at social events. Their task was to prevent their charge from having undesirable romantic rendezvous with young boys. The term „molecular chaperones“ is used in cellular biology to refer to a group of proteins which prevent undesirable contact between other proteins.


The chaperone ZRF1 helps the ribosome to regulate protein synthesis. A new study shows that it also participates in the regulated translation of DNA segments into transcripts in the nucleus.

Such contact can be particularly dangerous during protein production, a process carried out by the ribosome in the cell. The ribosome functions like a knitting spool: 20 different amino acids are threaded together like loops of thread in various sequences and amounts. The emerging amino acid chain disappears into a tunnel and does not come back out until it has reached a certain length.

A research group led by Freiburg biochemist Prof. Dr. Sabine Rospert studies how the chaperones at the end of the ribosomal tunnel influence the fate of newly synthesized proteins and how their functioning is coordinated in time and space. In 2005, the group discovered the chaperone ZRF1 at the end of the human ribosomal tunnel. ZRF1 exhibits structural characteristics which are otherwise typical only of proteins which influence the chromatin structure. Chromatin is a combination of DNA, histone, and other proteins in the nucleus of the cell. The DNA contains the information necessary for letting a ribosome know which amino acid chain it should produce. Gene segments of the DNA are translated into transcripts for this purpose, which then leave the nucleus in order to program the ribosomes for the synthesis of certain proteins.

... more about:
»DNA »Protein »ZRF1 »amino acid »chaperones »proteins

Why does a chaperone sitting at the end of the ribosomal tunnel need to possess characteristics that can influence the chromatin structure in the nucleus? Thanks to the cooperation between Sabine Rospert’s team in Freiburg and a group of researchers working under the biologist Prof. Dr. Luciano Di Croce at the Centre for Genomic Regulation in Barcelona, Spain, scientists are now a step closer to answering this question. Di Croche investigates protein complexes which influence the chromatin structure and thus also the production of transcripts. Reversible modifications to histone proteins in the chromatin play a decisive role in these processes. The experiments conducted by the scientists have revealed that ZRF1 influences the modification of a histone protein, thus allowing the production of a specific group of transcripts for a limited period of time.

These results, published in the current issue of the scientific journal „Nature,“ constitute an important step in the quest to understand the connection between the function of ZRF1 in the ribosome and in the chromatin. The discovery that this molecular chaperone has a dual function, both in the process of transcription and in the translation of the transcripts into proteins at a different place and time, is important initial evidence for the assumption that there is a link between the regulation of the two processes.

Contact:
Prof. Dr. Sabine Rospert
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: 0761/203-5259
Fax: 0761/203-5257
E-Mail: sabine.rospert@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Further information:
http://www.uni-freiburg.de

Further reports about: DNA Protein ZRF1 amino acid chaperones proteins

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>