Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Need Chaperones

07.01.2011
Freiburg Biochemist Describes Newly Discovered Processes in Production of Proteins in „Nature“

Young unmarried girls used to be accompanied by chaperones at social events. Their task was to prevent their charge from having undesirable romantic rendezvous with young boys. The term „molecular chaperones“ is used in cellular biology to refer to a group of proteins which prevent undesirable contact between other proteins.


The chaperone ZRF1 helps the ribosome to regulate protein synthesis. A new study shows that it also participates in the regulated translation of DNA segments into transcripts in the nucleus.

Such contact can be particularly dangerous during protein production, a process carried out by the ribosome in the cell. The ribosome functions like a knitting spool: 20 different amino acids are threaded together like loops of thread in various sequences and amounts. The emerging amino acid chain disappears into a tunnel and does not come back out until it has reached a certain length.

A research group led by Freiburg biochemist Prof. Dr. Sabine Rospert studies how the chaperones at the end of the ribosomal tunnel influence the fate of newly synthesized proteins and how their functioning is coordinated in time and space. In 2005, the group discovered the chaperone ZRF1 at the end of the human ribosomal tunnel. ZRF1 exhibits structural characteristics which are otherwise typical only of proteins which influence the chromatin structure. Chromatin is a combination of DNA, histone, and other proteins in the nucleus of the cell. The DNA contains the information necessary for letting a ribosome know which amino acid chain it should produce. Gene segments of the DNA are translated into transcripts for this purpose, which then leave the nucleus in order to program the ribosomes for the synthesis of certain proteins.

... more about:
»DNA »Protein »ZRF1 »amino acid »chaperones »proteins

Why does a chaperone sitting at the end of the ribosomal tunnel need to possess characteristics that can influence the chromatin structure in the nucleus? Thanks to the cooperation between Sabine Rospert’s team in Freiburg and a group of researchers working under the biologist Prof. Dr. Luciano Di Croce at the Centre for Genomic Regulation in Barcelona, Spain, scientists are now a step closer to answering this question. Di Croche investigates protein complexes which influence the chromatin structure and thus also the production of transcripts. Reversible modifications to histone proteins in the chromatin play a decisive role in these processes. The experiments conducted by the scientists have revealed that ZRF1 influences the modification of a histone protein, thus allowing the production of a specific group of transcripts for a limited period of time.

These results, published in the current issue of the scientific journal „Nature,“ constitute an important step in the quest to understand the connection between the function of ZRF1 in the ribosome and in the chromatin. The discovery that this molecular chaperone has a dual function, both in the process of transcription and in the translation of the transcripts into proteins at a different place and time, is important initial evidence for the assumption that there is a link between the regulation of the two processes.

Contact:
Prof. Dr. Sabine Rospert
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: 0761/203-5259
Fax: 0761/203-5257
E-Mail: sabine.rospert@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Further information:
http://www.uni-freiburg.de

Further reports about: DNA Protein ZRF1 amino acid chaperones proteins

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>