Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Need Chaperones

07.01.2011
Freiburg Biochemist Describes Newly Discovered Processes in Production of Proteins in „Nature“

Young unmarried girls used to be accompanied by chaperones at social events. Their task was to prevent their charge from having undesirable romantic rendezvous with young boys. The term „molecular chaperones“ is used in cellular biology to refer to a group of proteins which prevent undesirable contact between other proteins.


The chaperone ZRF1 helps the ribosome to regulate protein synthesis. A new study shows that it also participates in the regulated translation of DNA segments into transcripts in the nucleus.

Such contact can be particularly dangerous during protein production, a process carried out by the ribosome in the cell. The ribosome functions like a knitting spool: 20 different amino acids are threaded together like loops of thread in various sequences and amounts. The emerging amino acid chain disappears into a tunnel and does not come back out until it has reached a certain length.

A research group led by Freiburg biochemist Prof. Dr. Sabine Rospert studies how the chaperones at the end of the ribosomal tunnel influence the fate of newly synthesized proteins and how their functioning is coordinated in time and space. In 2005, the group discovered the chaperone ZRF1 at the end of the human ribosomal tunnel. ZRF1 exhibits structural characteristics which are otherwise typical only of proteins which influence the chromatin structure. Chromatin is a combination of DNA, histone, and other proteins in the nucleus of the cell. The DNA contains the information necessary for letting a ribosome know which amino acid chain it should produce. Gene segments of the DNA are translated into transcripts for this purpose, which then leave the nucleus in order to program the ribosomes for the synthesis of certain proteins.

... more about:
»DNA »Protein »ZRF1 »amino acid »chaperones »proteins

Why does a chaperone sitting at the end of the ribosomal tunnel need to possess characteristics that can influence the chromatin structure in the nucleus? Thanks to the cooperation between Sabine Rospert’s team in Freiburg and a group of researchers working under the biologist Prof. Dr. Luciano Di Croce at the Centre for Genomic Regulation in Barcelona, Spain, scientists are now a step closer to answering this question. Di Croche investigates protein complexes which influence the chromatin structure and thus also the production of transcripts. Reversible modifications to histone proteins in the chromatin play a decisive role in these processes. The experiments conducted by the scientists have revealed that ZRF1 influences the modification of a histone protein, thus allowing the production of a specific group of transcripts for a limited period of time.

These results, published in the current issue of the scientific journal „Nature,“ constitute an important step in the quest to understand the connection between the function of ZRF1 in the ribosome and in the chromatin. The discovery that this molecular chaperone has a dual function, both in the process of transcription and in the translation of the transcripts into proteins at a different place and time, is important initial evidence for the assumption that there is a link between the regulation of the two processes.

Contact:
Prof. Dr. Sabine Rospert
Institute of Biochemistry and Molecular Biology
University of Freiburg
Phone: 0761/203-5259
Fax: 0761/203-5257
E-Mail: sabine.rospert@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Further information:
http://www.uni-freiburg.de

Further reports about: DNA Protein ZRF1 amino acid chaperones proteins

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>