Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein wields phosphate group to inhibit cancer metastasis

04.01.2011
Tagging an enzyme with chemical also is crucial to bone cell formation

By sticking a chemical group to it at a specific site, a protein arrests an enzyme that may worsen and spread cancer, an international research team led by scientists at The University of Texas MD Anderson Cancer Center reports in the January issue of Nature Cell Biology.

In addition to highlighting a novel anti-cancer pathway, the team found that the same deactivation of the enzyme called EZH2 is necessary for the formation of bone-forming cells from the stem cells that make them and other tissues.

"EZH2 is overexpressed in aggressive solid tumors and tied to cancer progression and metastasis," said the paper's senior author, Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology. "We have found that another protein, CDK1, deactivates EZH2."

The team's basic research findings provide a rationale for developing an EZH2 inhibitor or a drug that mimics the protein that deactivates it as new cancer drugs. "You have to understand the molecular details of cancer formation and progression to develop new therapies that improve treatment and prevention," Hung said.

In a series of experiments, the team demonstrated how CDK1 interferes with EZH2, reducing cell migration and invasion in breast cancer cell lines.

EZH2 silences gene expression by attaching a methyl group, which consists of one carbon and three hydrogen atoms, to a histone protein that is intertwined with DNA and other proteins to compose chromosomes. Genes suppressed by this methylation include tumor suppressors that would otherwise prevent cancer growth and spread.

The team showed that CDK1 short-circuits EZH2-mediated methylation by attaching a different chemical group consisting of one phosphate and three oxygen atoms to EZH2, a process called phosphorylation. And that phosphorylation has to occur at a specific amino acid on EZH2 to have this effect.

It's a matter of phosphorylation trumping methylation, Hung said. The phosphorylated version of EZH2 cannot methylate the target histone protein, so repressed genes are awakened.

Cancer cells with EZH2 that had a mutant version of the location where the phosphate group connects, preventing phosphorylation, had double the cell migration and invasion of cancer cells with the regular, unmutated version of EZH2.

Same process vital to bone formation

EZH2 plays an important normal role in a variety of biological processes. "EZH2 is crucial to embryonic development because it turns genes off and on to guide the differentiation of embryonic stem cells into tissues and organs," Hung said. Embryonic stem cells can turn into any type of cell.

In a separate set of experiments, the researchers demonstrated that phosphorylation of EZH2 is necessary to the production of bone cells (osteoblasts).

Mesenchymal stem cells can differentiate into bone, cartilage or fat cells. The team showed only those cells with EZH2 phosphorylated by CDK1 differentiated into bone cells. Genes crucial to bone formation were silenced by methlyation but awakened when CDK1 altered EZH2.

A genomewide screen to identify genes targeted by EZH2 in mesenchymal stem cells was conducted before and after the cells differentiated into bone cells. Before, more than 4,000 genes were found to bind to EZH2. After differentiation to bone cells, 30 or fewer genes bound to the protein.

"This and other recently reported studies open up drug development possibilities by either inhibiting the methyltransferase activity of EZH2 or regulating phosphorylation to indirectly regulate EZH2's activity," Hung said.

"This study also suggests a possible way to induce mesenchymal stem cell differentiation into bone cells, which may have long-term implications for regenerative medicine for bone disease," Hung said.

This project was a result of the MD Anderson/China Medical University Hospital Sister institution collaboration.

Research was supported by grants from the National Cancer Institute, Kadoorie Charitable Foundations, National Breast Cancer Foundation, Inc., and the MD Anderson/China Medical University and Hospital Sister Foundation Funds and Cancer Center of Research Excellence from Taiwan.

Co-authors with Hung and first author Yongkun Wei, Ph.D., are Jingyu Lang, Ph.D., Bin Shi, Ph.D., Cheng-Chieh Yang, D.D.S., Ph.D., and Jer-Yen Yang Ph.D., all of MD Anderson's Department of Molecular and Cellular Biology; Ya-Huey Chen, Ph.D., Long-Yuan Li, Ph.D., and Chun-Yi Lin, all of Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan; Su-Peng Yeh, M.D., Division of Hematology and Oncology, China Medical University and Hospital, and Chien-Chen Lai, Ph.D., Graduate Institute of Chinese Medical Science, China Medical Universiy and Hospital and the Institute of Molecular Biology, National Chung Hsing University, Taiwan. Hung also is affiliated with China Medical University and Hospital and with The University of Texas Graduate School of Biomedical Sciences at Houston.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>