Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ‘Rescues’ Stuck Cellular Factories

21.03.2014

Using a powerful data-crunching technique, Johns Hopkins researchers have sorted out how a protein keeps defective genetic material from gumming up the cellular works.

 The protein, Dom34, appears to “rescue” protein-making factories called ribosomes when they get stuck obeying defective genetic instructions, the researchers report in the Feb. 27 issue of Cell.

“We already knew that binding to Dom34 makes a ribosome split and say ‘I’m done,’ and that without it, animals can’t survive,” says Rachel Green, Ph.D., a professor in the Department of Molecular Biology and Genetics at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator. “In this study, we saw how the protein behaves in ‘real life,’ and that it swoops in only when ribosomes are in a very particular type of crisis.”

Ribosomes use genetic instructions borne by long molecules called messenger RNA to make proteins that cells need to get things done. Normally, ribosomes move along strands of messenger RNA, making proteins as they go, until they encounter a genetic sequence called a stop codon. At that point, the protein is finished, and specialized recycling proteins help the ribosome disconnect from the RNA and break up into pieces.

Those pieces later come together again on a different RNA strand to begin the process again. From Green’s earlier work with Dom34, it appeared that the protein might be one of the recycling proteins that kicks in at stop codons.

To see if that was the case, Green used a method for analyzing the “footprints” of ribosomes developed at the University of California, San Francisco. In 2009, scientists there reported they had mashed up yeast (a single-celled organism that is genetically very similar to higher-order animals) and dissolved any RNA that wasn’t protected inside a ribosome at the time. They then took the remaining bits of RNA — those that had been “underfoot” of ribosomes — and analyzed their genetic makeup. That sequence data was then matched to the messenger RNA it came from, giving the researchers a picture of exactly which RNA — and thus, which genes — were being turned into protein at a given moment in time.

Green and postdoctoral fellow Nick Guydosh, Ph.D., adapted this method to see what Dom34 was up to. Guydosh wrote a computer program to compare footprint data from yeast with and without functioning Dom34 genes. The program then determined where on messenger RNAs the ribosomes in cells without Dom34 tended to stall. It was at these points that Dom34 was rescuing the ribosomes in the normal cells, Guydosh says.

“What many of these ‘traffic jams’ had in common was that the RNA lacked a stop codon where the ribosome could be recycled normally,” he says. For example, some of the problem messenger RNAs were incomplete — a common occurrence, as chopping up messenger RNAs is one way cells regulate how much of a protein is produced.

In others, the RNA had a stop codon, but something strange and unexpected was going on in these latter cases: The ribosomes kept going past the place where the stop codon was and went into a no man’s land without protein-making instructions. “Ribosomes kept moving but stopped making protein, at least for a time,” Guydosh says. “As far as we know, this ‘scanning’ activity has never been seen before — it was a big surprise.”
“What these results show us is why we need Dom34 to survive: It’s the only protein that can rescue ribosomes stuck on RNAs,” says Green. “Without it, cells eventually run out of the ribosomes they need to make protein.”

Link to the Cell paper

This study was funded by the National Institute of General Medical Sciences (grant number R01GM059425), the Howard Hughes Medical Institute and the Damon Runyon Cancer Research Foundation.

Media Contacts: Shawna Williams; 410-955-8236; shawna@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Catherine Kolf; 443-287-2251; ckolf@jhmi.edu

Shawna Williams | newswise
Further information:
http://www.jhmi.edu

Further reports about: Cellular Hopkins Medicine Protein RNA RNAs animals pieces proteins ribosome ribosomes sequence

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>