Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ‘Rescues’ Stuck Cellular Factories

21.03.2014

Using a powerful data-crunching technique, Johns Hopkins researchers have sorted out how a protein keeps defective genetic material from gumming up the cellular works.

 The protein, Dom34, appears to “rescue” protein-making factories called ribosomes when they get stuck obeying defective genetic instructions, the researchers report in the Feb. 27 issue of Cell.

“We already knew that binding to Dom34 makes a ribosome split and say ‘I’m done,’ and that without it, animals can’t survive,” says Rachel Green, Ph.D., a professor in the Department of Molecular Biology and Genetics at the Johns Hopkins University School of Medicine and a Howard Hughes Medical Institute investigator. “In this study, we saw how the protein behaves in ‘real life,’ and that it swoops in only when ribosomes are in a very particular type of crisis.”

Ribosomes use genetic instructions borne by long molecules called messenger RNA to make proteins that cells need to get things done. Normally, ribosomes move along strands of messenger RNA, making proteins as they go, until they encounter a genetic sequence called a stop codon. At that point, the protein is finished, and specialized recycling proteins help the ribosome disconnect from the RNA and break up into pieces.

Those pieces later come together again on a different RNA strand to begin the process again. From Green’s earlier work with Dom34, it appeared that the protein might be one of the recycling proteins that kicks in at stop codons.

To see if that was the case, Green used a method for analyzing the “footprints” of ribosomes developed at the University of California, San Francisco. In 2009, scientists there reported they had mashed up yeast (a single-celled organism that is genetically very similar to higher-order animals) and dissolved any RNA that wasn’t protected inside a ribosome at the time. They then took the remaining bits of RNA — those that had been “underfoot” of ribosomes — and analyzed their genetic makeup. That sequence data was then matched to the messenger RNA it came from, giving the researchers a picture of exactly which RNA — and thus, which genes — were being turned into protein at a given moment in time.

Green and postdoctoral fellow Nick Guydosh, Ph.D., adapted this method to see what Dom34 was up to. Guydosh wrote a computer program to compare footprint data from yeast with and without functioning Dom34 genes. The program then determined where on messenger RNAs the ribosomes in cells without Dom34 tended to stall. It was at these points that Dom34 was rescuing the ribosomes in the normal cells, Guydosh says.

“What many of these ‘traffic jams’ had in common was that the RNA lacked a stop codon where the ribosome could be recycled normally,” he says. For example, some of the problem messenger RNAs were incomplete — a common occurrence, as chopping up messenger RNAs is one way cells regulate how much of a protein is produced.

In others, the RNA had a stop codon, but something strange and unexpected was going on in these latter cases: The ribosomes kept going past the place where the stop codon was and went into a no man’s land without protein-making instructions. “Ribosomes kept moving but stopped making protein, at least for a time,” Guydosh says. “As far as we know, this ‘scanning’ activity has never been seen before — it was a big surprise.”
“What these results show us is why we need Dom34 to survive: It’s the only protein that can rescue ribosomes stuck on RNAs,” says Green. “Without it, cells eventually run out of the ribosomes they need to make protein.”

Link to the Cell paper

This study was funded by the National Institute of General Medical Sciences (grant number R01GM059425), the Howard Hughes Medical Institute and the Damon Runyon Cancer Research Foundation.

Media Contacts: Shawna Williams; 410-955-8236; shawna@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Catherine Kolf; 443-287-2251; ckolf@jhmi.edu

Shawna Williams | newswise
Further information:
http://www.jhmi.edu

Further reports about: Cellular Hopkins Medicine Protein RNA RNAs animals pieces proteins ribosome ribosomes sequence

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>