Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein plays role in helping plants see light

13.10.2011
Plants do not have eyes or legs, yet they are able to "see" and move toward and away from light. This ability, called phototropism, is controlled by a series of molecular-level signals between proteins inside and between plant cells.

In a paper published in The Plant Cell, University of Missouri scientists report for the first time the elusive role a critical protein plays in this molecular signaling pathway that regulates phototropism in plants.

Directional light that induces phototropism is sensed by a plant through the action of two light-sensing proteins, phototropin 1 and phototropin 2. These proteins act as photoreceptors and initiate the phototropic signaling response in conjunction with a third protein, called NPH3.

"If the phototropic signaling pathway were like a baseball game, the phototropins would be the pitcher and NPH3 the catcher who work together to coordinate the signal, or pitch," says Mannie Liscum, a professor of biological sciences in the College of Arts and Science and in the Christopher S. Bond Life Sciences Center. "Prior to this study, no one knew how NPH3 and the phototropins cooperated to facilitate the signal."

Using a combination of genetic and biochemical methods, Liscum and colleagues found that NPH3 functions as part of a protein complex that modifies phototropin 1 by the addition of a small protein "tag" called ubiquitin. Either a single ubiquitin or a chain of ubiquitin proteins is added, depending on the amount of light the plant "sees."

If we continue the baseball analogy, ubiquitin is the hand signals NPH3 uses to coordinate with phototropin 1 the type and sequence of signals depending on the particular lighting situation.

"In low-light conditions, phototropin 1 is modified with single ubiquitin proteins and then apparently moves to a different part of the cell. In high-light conditions, phototropin 1 is modified with multiple ubiquitin proteins and is degraded by the cell to shut down further signaling," says Liscum.

The finding may have applicability to research beyond phototropism in plants.

"The tagging of proteins with ubiquitin represents a common biochemical event throughout the biological world. In fact, many human disease pathologies are associated with alterations in ubiquitin-tagging," says Liscum. "Our studies identifying a single enzyme complex that is capable of modifying a substrate in different ways simply based on the environmental conditions may therefore have implications on fields far askew from agriculture."

The paper's co-authors include Diana Roberts and Ullas Pedmale, who are equal contributing co-first authors, as well as Johanna Morrow, Shrikesh Sachdev, and Mark Hannink, all from the University of Missouri; Esther Lechner and Pascal Genschik from the Institut de Biologie Moleculaire des Plantes du CNRS, France; and Xiaobo Tang and Ning Zheng from the University of Washington, Seattle. The research was supported by funding from the National Science Foundation and the National Institutes of Health.

Melody Kroll | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>