Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Pairs Make Cells Remember

15.07.2016

Even single cells are able to remember information if they receive the order from their proteins. Researchers at the University of Basel’s Biozentrum have discovered that proteins form pairs to give the signal for storing information in the cell’s memory. The results of the study have now been published in “Cell Reports”.

Like our brains, individual cells also have a kind of memory, which enables them to store information. To make this possible, the cells require positive feedback from their proteins. The research group led by Prof. Attila Becskei at the Biozentrum of the University of Basel has now discovered that the proteins need to form pairs in these feedback loops to store information.


Cells with protein pairs store information for the long term (blue). Cells with single proteins do not display persistent memory (red and cyan).

University of Basel, Biozentrum

Cellular memory works only with protein pairs

The feedback by protein pairs works properly under specific conditions: “For dimerization the proteins must be present in the right concentration,” says Attila Becskei. If there are too few proteins, no pairs form and the cell does not store information. But when the protein concentration is too high, coupling does not work either.

... more about:
»Attila »Biozentrum »Cells »cell division »skin cell

“It's similar to us humans. In large cities, packed with people, dating is difficult. But living alone in the countryside does not make it easier to find a partner. So we also need to be at the right place at the right time,” illustrates Becskei.

Once the protein pairs are formed they give the cell the signal to store information in its memory. This makes the cell more sensitive to remark environmental stimuli and to respond to these more quickly in the future.

Paired protein also essential for cell differentiation

The cell not only requires the appropriate feedback from protein pairs in order to remember information but also for cell division and cell differentiation – the development of specialized cells. The understanding of the functioning of such feedback loops can reveal how to erase the cell’s memory. This is necessary, for example, for being able to turn a specialized cell, such as a skin cell, back into an unspecialized stem cell.

“For cellular reprogramming the cell must first forget that is was a skin cell,” says Becskei. “Using mathematical models we have developed, we now want to investigate, which other feedback loops contribute to cellular memory.”

Original source

Chieh Hsu, Vincent Jaquet, Mumun Gencoglu & Attila Becskei
Protein dimerization generates bistability in positive feedback loops
Cell Reports (2016), doi: 10.1016/j.celrep.2016.06.072

Further information

Prof. Dr. Attila Becskei, University of Basel, Biozentrum, tel. +41 61 267 22 22, email: attila.becskei@unibas.ch

Heike Sacher, University of Basel, Communications Biozentrum, tel. +41 61 267 14 49, email: heike.sacher@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Attila Biozentrum Cells cell division skin cell

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>