Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein Pairs Make Cells Remember


Even single cells are able to remember information if they receive the order from their proteins. Researchers at the University of Basel’s Biozentrum have discovered that proteins form pairs to give the signal for storing information in the cell’s memory. The results of the study have now been published in “Cell Reports”.

Like our brains, individual cells also have a kind of memory, which enables them to store information. To make this possible, the cells require positive feedback from their proteins. The research group led by Prof. Attila Becskei at the Biozentrum of the University of Basel has now discovered that the proteins need to form pairs in these feedback loops to store information.

Cells with protein pairs store information for the long term (blue). Cells with single proteins do not display persistent memory (red and cyan).

University of Basel, Biozentrum

Cellular memory works only with protein pairs

The feedback by protein pairs works properly under specific conditions: “For dimerization the proteins must be present in the right concentration,” says Attila Becskei. If there are too few proteins, no pairs form and the cell does not store information. But when the protein concentration is too high, coupling does not work either.

... more about:
»Attila »Biozentrum »Cells »cell division »skin cell

“It's similar to us humans. In large cities, packed with people, dating is difficult. But living alone in the countryside does not make it easier to find a partner. So we also need to be at the right place at the right time,” illustrates Becskei.

Once the protein pairs are formed they give the cell the signal to store information in its memory. This makes the cell more sensitive to remark environmental stimuli and to respond to these more quickly in the future.

Paired protein also essential for cell differentiation

The cell not only requires the appropriate feedback from protein pairs in order to remember information but also for cell division and cell differentiation – the development of specialized cells. The understanding of the functioning of such feedback loops can reveal how to erase the cell’s memory. This is necessary, for example, for being able to turn a specialized cell, such as a skin cell, back into an unspecialized stem cell.

“For cellular reprogramming the cell must first forget that is was a skin cell,” says Becskei. “Using mathematical models we have developed, we now want to investigate, which other feedback loops contribute to cellular memory.”

Original source

Chieh Hsu, Vincent Jaquet, Mumun Gencoglu & Attila Becskei
Protein dimerization generates bistability in positive feedback loops
Cell Reports (2016), doi: 10.1016/j.celrep.2016.06.072

Further information

Prof. Dr. Attila Becskei, University of Basel, Biozentrum, tel. +41 61 267 22 22, email:

Heike Sacher, University of Basel, Communications Biozentrum, tel. +41 61 267 14 49, email:

Reto Caluori | Universität Basel
Further information:

Further reports about: Attila Biozentrum Cells cell division skin cell

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>