Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein love triangle key to crowning bees queens?

10.11.2011
A honey bee becomes a royal queen or a common worker as a result of the food she receives as a larva.

While it has been well established that royal jelly is the diet that makes bees queens, the molecular path from food to queen is still in dispute. However, scientists at Arizona State University, led by Adam Dolezal and Gro Amdam, have helped reconcile some of the conflicts about bee development and the role of insulin pathways and partner proteins. Their article "IIS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee cast fate" has been published in the December issue of the Journal of Experimental Biology.


A worker bee (left) and queen bee (right) show the vast differences in development that can occur based upon the food a bee receives during its larval stages. These bees were raised in the laboratory of Gro Amdam at Arizona State Univeristy. Housed in plastic dishes, rather than a bee colony, allowed complete control of their diet, and offered researchers the ability to manipulate their gene expression levels and better identify developmental routes. Credit: Christofer Bang

Central to the dispute within the scientific community about "who would be queen" has been a ground-breaking study published in the journal Nature by Japanese scientist Masaki Kamakura in 2011. He found that a single protein in royal jelly, called royalactin, activated queen development in larval bees through interaction with an epidermal growth factor receptor (EGFR). Kamakura's work suggested that insulin signals do not play a role in queen development, despite previous studies suggesting otherwise, including work pioneered with the insulin receptor protein by Amdam's group.

Undeterred by Kamakura's findings, Dolezal, a doctoral student, and Amdam, a Pew Biomedical Scholar and professor in ASU's School of Life Sciences, looked for ways to resolve the disparity between the research studies. Amdam's team's first step involved taking control of the insulin receptor's partner protein, IRS, which the insulin receptor relies upon for signaling. The scientists found that by blocking IRS, they caused a central developmental hormone to crash, which forced larval bees into the worker mold despite their diet of royal jelly. Amdam's team then "rescued" the now worker-destined bees. They found that by giving the bees hormone treatments, the bees could then develop along the queen trajectory.

However, while Dolezal and Amdam's studies showed that they could block queen development, and then rescue it, and clarified the role of IRS in the queen-making process, their work could not resolve the remaining conflict with Kamakura's results.

Taking a new tack, the Amdam group, which also included Navdeep Mutti, Florian Wolschin, and Jasdeep Mutti, and Washington State University scientist Kulvinder Gill, turned to mathematical modeling, combining their results with approaches that analyze potential partner interactions. These models, developed to understand and clarify complex relationships in physics and biology, allowed the ASU researchers to build a model of consensus – explaining how the IRS partner protein could partner to both epidermal growth factor receptor and the insulin receptor. And while the insulin receptor itself may play no role – as Kamakura's findings suggest – Dolezal and Amdam's findings show that the IRS partner protein may in fact be key to a molecular love triangle, interacting with both receptors, and with the bond to epidermal growth factor receptor being the crowning feature in queen development.

Margaret Coulombe | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>