Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein ‘jailbreak’ helps cancer cells live

29.03.2012
Researchers at Brown University and Hasbro Children’s Hospital have traced the molecular interactions that allow the protein survivin to escape the nucleus of a breast cancer cell and prolong the cell’s life. The study may help in the development of better therapies and prognostics.

f the fight against breast cancer were a criminal investigation, then the proteins survivin, HDAC6, CBP, and CRM1 would be among the shadier figures. In that vein, a study to be published in the March 30 Journal of Biological Chemistry is the police report that reveals a key moment for keeping cancer cells alive: survivin’s jailbreak from the nucleus, aided and abetted by the other proteins. The research highlights that a protein’s location in a cell affects its impact on disease, and offers clear new leads for the investigation.

All four proteins were already under suspicion. Researchers, for example, have already tried to assess what levels of HDAC6 in patients with estrogen-receptor positive breast cancer may mean for their prognosis. The results have been inconclusive. The new research suggests that measuring overall levels may not be enough, said the study’s senior author Dr. Rachel Altura, associate professor of pediatrics in The Warren Alpert Medical School of Brown University and a pediatric oncologist at Hasbro Children’s Hospital.

Altura’s emphasis on location comes from what her research team found as they tracked and tweaked the comings and goings of survivin in cells. Inside the nucleus, survivin is no problem. Outside the nucleus, but within the cell, it can prevent normal cell death, allowing cancer cells to persist.

In previous work, Altura and her collaborators established that under normal circumstances, CBP chemically regulates survivin, a process called acetylation, and keeps it in the nucleus. The question in the new work was how survivin gets out.

In a series of experiments, what they observed was that in human and mouse breast cancer cells, HDAC6 gathers at the boundary between the nucleus and the rest of the cell, becomes activated by CBP, then binds survivin and undoes its acetylation. This deacetylation allows survivin to then be shuttled out of the nucleus by CRM1.

In the classic jailbreak, CBP is a corrupt guard who looks the other way as HDAC6, the shovel, is smuggled in. The final accomplice, CRM1, is the tunnel with a getaway car on the other end.

Working the new leads

Altura said the research suggests a clear strategy — to keep survivin in the nucleus — and two leads to pursue it, both of which she has already begun working on with collaborators in academia and in the pharmaceutical industry.

One idea is to inhibit HDAC6 in an attempt to prevent it from misregulating the acetylation of survivin. While general HDAC inhibitors are in clinical trials, Altura is optimistic that blocking just HDAC6, using specific inhibitors developed by a colleague in Japan, would have fewer complications.

“You always have to worry about all the things you don’t know that you are targeting,” she said. “If we can target HDAC6, we can maybe block survivin from coming out of the nucleus and maintain it in its good state.”

The other strategy is to block CRM1, Altura said, an idea she is pursuing with a pharmaceutical company in breast cancer cells in the lab. She said preliminary experiments look promising in keeping survivin inside the nucleus and making cancer cells more susceptible to dying.

The study’s lead author was Brown graduate student Matthew Riolo. Other authors are Zachary Cooper, Michael Holloway, Yan Cheng, Cesario Bianchi, Evgeny Yakirevich, Li Ma, and Eugene Chin.

The National Institutes of Health’s Center for Research Resources funded the study.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>