Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein clamps tight to telomeres to help prevent aging ... and support cancer

The number of times our cells can divide is dictated by telomeres, stretches of DNA at the tips of our chromosomes. Understanding how telomeres keep our chromosomes – and by extension, our genomes – intact is an area of intense scientific focus in the fields of both aging and cancer.

Now, scientists at The Wistar Institute have published the first detailed report on the structure and function of a crucial domain in the protein known as Cdc13, which sustains telomeres by clamping to DNA and recruiting replicating enzymes to the area.

While the nature of this portion of Cdc13 had previously eluded scientists, the Wistar researchers found that two copies of the protein bind together to form what is called a “dimer,” and how that dimer physically interacts with DNA, regulating how enzymes called telomerases access and lengthen the telomeres. The study was performed using the yeast gene, however, this essential life process has changed little through evolution, and evidence suggests that the human equivalent of this protein may make a good target for future anticancer drugs. They present their findings in the journal Molecular and Cellular Biology, available online now, ahead of print.

“Cdc13 has a crucial support role in maintaining and lengthening telomeres, which are reduced in length through every round of DNA replication,” said Emmanuel Skordalakes, Ph.D., assistant professor in Wistar’s Gene Expression and Regulation Program and senior author of the study. “We know that disabling this protein in humans will most likely lead to senescence, which is of particular interest in cancer, because telomere lengthening is one of the ways cancer cells obtain their immortality."

In the present study, Skordalakes and his colleagues detail how Cdc13 serves a dual function in telomere replication. First, it keeps the cells’ natural DNA repair mechanisms from mistaking the telomere for a broken stretch of DNA, which could cause genetic mayhem if such repair proteins fuse the ends of two chromosomes together, for example. Secondly, Cdc13 recruits telomerase and related proteins to place in order to lengthen the telomeres.

When the researchers introduced mutations into Cdc13 that prevented the protein from forming a dimer, it caused the telomeres to shorten, which would hasten the demise of the yeast cells. When they created mutations that prevented Cdc13 dimers from binding to DNA, it had the effect of excessively lengthening telomeres, an act the researchers attribute to the notion that Cdc13 helps regulate the ability of DNA-replication enzymes to access telomeres. “The complex role of Cdc13 underscores the unique nature of telomeres and the fine balance between normal cell division and cancer,” said Skordalakes.

Telomeres are important to cell division because they serve as sort of a timing mechanism that can, in effect, limit the number of times a normal cell can divide. As each cell divides, it must first replicate – or copy – the DNA of its chromosomes in exacting detail.

However, the proteins in cells that make this replication possible physically cannot copy the last few base units of DNA at the tips of the chromosomes, which effectively shortens the telomere each time a chromosome is copied. Without telomeres to serve as a buffer, a chromosome could conceivably lose a functioning gene as it is copied. This natural “lifespan” of cells was first identified in the 1960s as the Hayflick Limit, named after its discoverer, Leonard Hayflick, Ph.D., then a Wistar scientist.

In 2008, the Skordalakes laboratory was the first to determine the 3-D structure of the catalytic subunit of the enzyme telomerase, which functions to tack on the short stretches of DNA at the telomeres that the cell’s main DNA-replicating enzymes miss. The act of preserving telomeres through telomerase is a hallmark of only certain cells, particularly those in developing embryos. In adults, telomerase is active in stem cells, certain immune system cells and, most notably, cancer cells.

According to Skordalakes, the discovery of the dimeric nature of Cdc13 sheds light into the core function of this protein, the recruitment of telomerase (which is also a dimer) to the telomeres. Within the Cdc13 dimer are multiple sites that can bind to DNA with varying degrees of affinity. This allows Cdc13 to straddle the DNA so that one section grips tightly to DNA, while another section – with a more relaxed grip – can bind nearer the tail end of the DNA strand and where telomerase binds. This feature of Cdc13 also assists in recruiting telomerase, summoning the enzyme into place above the telomere.

The 'weak hand' (light blue) of Cdc13 attaches to the tail end of the telomere, swinging out of the way to allow telomerase (green) to attach to and lengthen the telomeric DNA."

“You can think of Cdc13 as if it were you hanging on to the edge of a cliff, with one grip stronger than the other,” Skordalakes said. “You’re going to keep that strong hand on the cliff’s edge while your weaker hand reaches into your pocket for your phone.”

When Cdc13 interacts with telomerase, Skordalakes says, its weaker hand lets go of DNA, allowing the telomerase to access the telomere while the “strong hand” keeps the telomerase-Cdc13 complex firmly attached to the chromosome end. “It effectively serves as both a protective placeholder and a means of guiding telomerase activity,” Skordalakes said.

The Skordalakes laboratory continues to explore the complex biology of telomeres, as well as the numerous other proteins necessary for telomere lengthening to occur. Meanwhile, they are investigating the potential of small molecule inhibitors to serve as viable therapeutics against cancer by blocking telomerase and their related proteins.

Co-authors from The Wistar Institute include David W. Speicher, Ph.D., a Wistar professor, and laboratory staff Meghan Mitchell (a former research assistant under Skordalakes), Mark Mason (a graduate student under Skordalakes), and Sandy Harper (a technician under Speicher ). They were joined by Jasmine S. Smith and F. Brad Johnson, M.D., Ph.D., from the University of Pennsylvania School of Medicine’s Department of Pathology and Laboratory Medicine.

The research was supported by grants from the Pennsylvania Department of Health, The Ellison Medical Foundation, The Emerald Foundation, Inc., and the National Institute on Aging of the National Institutes of Health.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures. On the Web at

Greg Lester | EurekAlert!
Further information:

Further reports about: Cdc13 DNA Protein biomedical research cancer drug cell division health services stem cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>