Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein clamps tight to telomeres to help prevent aging ... and support cancer

17.09.2010
The number of times our cells can divide is dictated by telomeres, stretches of DNA at the tips of our chromosomes. Understanding how telomeres keep our chromosomes – and by extension, our genomes – intact is an area of intense scientific focus in the fields of both aging and cancer.

Now, scientists at The Wistar Institute have published the first detailed report on the structure and function of a crucial domain in the protein known as Cdc13, which sustains telomeres by clamping to DNA and recruiting replicating enzymes to the area.

While the nature of this portion of Cdc13 had previously eluded scientists, the Wistar researchers found that two copies of the protein bind together to form what is called a “dimer,” and how that dimer physically interacts with DNA, regulating how enzymes called telomerases access and lengthen the telomeres. The study was performed using the yeast gene, however, this essential life process has changed little through evolution, and evidence suggests that the human equivalent of this protein may make a good target for future anticancer drugs. They present their findings in the journal Molecular and Cellular Biology, available online now, ahead of print.

“Cdc13 has a crucial support role in maintaining and lengthening telomeres, which are reduced in length through every round of DNA replication,” said Emmanuel Skordalakes, Ph.D., assistant professor in Wistar’s Gene Expression and Regulation Program and senior author of the study. “We know that disabling this protein in humans will most likely lead to senescence, which is of particular interest in cancer, because telomere lengthening is one of the ways cancer cells obtain their immortality."

In the present study, Skordalakes and his colleagues detail how Cdc13 serves a dual function in telomere replication. First, it keeps the cells’ natural DNA repair mechanisms from mistaking the telomere for a broken stretch of DNA, which could cause genetic mayhem if such repair proteins fuse the ends of two chromosomes together, for example. Secondly, Cdc13 recruits telomerase and related proteins to place in order to lengthen the telomeres.

When the researchers introduced mutations into Cdc13 that prevented the protein from forming a dimer, it caused the telomeres to shorten, which would hasten the demise of the yeast cells. When they created mutations that prevented Cdc13 dimers from binding to DNA, it had the effect of excessively lengthening telomeres, an act the researchers attribute to the notion that Cdc13 helps regulate the ability of DNA-replication enzymes to access telomeres. “The complex role of Cdc13 underscores the unique nature of telomeres and the fine balance between normal cell division and cancer,” said Skordalakes.

Telomeres are important to cell division because they serve as sort of a timing mechanism that can, in effect, limit the number of times a normal cell can divide. As each cell divides, it must first replicate – or copy – the DNA of its chromosomes in exacting detail.

However, the proteins in cells that make this replication possible physically cannot copy the last few base units of DNA at the tips of the chromosomes, which effectively shortens the telomere each time a chromosome is copied. Without telomeres to serve as a buffer, a chromosome could conceivably lose a functioning gene as it is copied. This natural “lifespan” of cells was first identified in the 1960s as the Hayflick Limit, named after its discoverer, Leonard Hayflick, Ph.D., then a Wistar scientist.

In 2008, the Skordalakes laboratory was the first to determine the 3-D structure of the catalytic subunit of the enzyme telomerase, which functions to tack on the short stretches of DNA at the telomeres that the cell’s main DNA-replicating enzymes miss. The act of preserving telomeres through telomerase is a hallmark of only certain cells, particularly those in developing embryos. In adults, telomerase is active in stem cells, certain immune system cells and, most notably, cancer cells.

According to Skordalakes, the discovery of the dimeric nature of Cdc13 sheds light into the core function of this protein, the recruitment of telomerase (which is also a dimer) to the telomeres. Within the Cdc13 dimer are multiple sites that can bind to DNA with varying degrees of affinity. This allows Cdc13 to straddle the DNA so that one section grips tightly to DNA, while another section – with a more relaxed grip – can bind nearer the tail end of the DNA strand and where telomerase binds. This feature of Cdc13 also assists in recruiting telomerase, summoning the enzyme into place above the telomere.

The 'weak hand' (light blue) of Cdc13 attaches to the tail end of the telomere, swinging out of the way to allow telomerase (green) to attach to and lengthen the telomeric DNA."

“You can think of Cdc13 as if it were you hanging on to the edge of a cliff, with one grip stronger than the other,” Skordalakes said. “You’re going to keep that strong hand on the cliff’s edge while your weaker hand reaches into your pocket for your phone.”

When Cdc13 interacts with telomerase, Skordalakes says, its weaker hand lets go of DNA, allowing the telomerase to access the telomere while the “strong hand” keeps the telomerase-Cdc13 complex firmly attached to the chromosome end. “It effectively serves as both a protective placeholder and a means of guiding telomerase activity,” Skordalakes said.

The Skordalakes laboratory continues to explore the complex biology of telomeres, as well as the numerous other proteins necessary for telomere lengthening to occur. Meanwhile, they are investigating the potential of small molecule inhibitors to serve as viable therapeutics against cancer by blocking telomerase and their related proteins.

Co-authors from The Wistar Institute include David W. Speicher, Ph.D., a Wistar professor, and laboratory staff Meghan Mitchell (a former research assistant under Skordalakes), Mark Mason (a graduate student under Skordalakes), and Sandy Harper (a technician under Speicher ). They were joined by Jasmine S. Smith and F. Brad Johnson, M.D., Ph.D., from the University of Pennsylvania School of Medicine’s Department of Pathology and Laboratory Medicine.

The research was supported by grants from the Pennsylvania Department of Health, The Ellison Medical Foundation, The Emerald Foundation, Inc., and the National Institute on Aging of the National Institutes of Health.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures. On the Web at www.wistar.org.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Cdc13 DNA Protein biomedical research cancer drug cell division health services stem cells

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>