Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protective effect of interferon on the liver solved – targeted treatment approaches available, soon?

Type I interferons are used for treatment of viral hepatitis because of their antiviral and thus, hepatoprotective effects. Treatment with interferon, however, involves severe adverse effects.

Researchers at the Paul-Ehrlich-Institut have now found the mechanism of how interferon protects the liver. In this context, specific suppressor cells and the balance between the inflammation mediator interleukin-1beta and its inhibitor, the interleukin-1 receptor antagonist play a central role. The findings may provide approaches to a more specific therapy with fewer adverse effects.

Liver histology of mice after treatment with poly(I:C). Control mice (WT) are protected by an interferon-mediated effect, mice without the interferon receptor (IFNAR-/-) develop severe liver damage.

Source: Paul-Ehrlich-Institut

Hepatology reports on the research results in its online prepublication (DOI:10.1002/hep.26915).

Type I interferons are mainly associated with their immunostimulatory, antiviral, and antitumoral effects. However, they also have anti-inflammatory properties. Thus, in patients with a liver inflammation due to a chronic hepatitis-C virus infection, interferon may improve the condition of the liver. This can also be observed when, thanks to treatment, the viral burden is negligible already.

PD (associate professor) Dr Zoe Waibler, head of a temporary research group at the Paul-Ehrlich-Institut (PEI), and co-workers have studied the mechanism which results in this protective effect. For the study not a virus but poly(I:C), an artificial double-stranded RNA which mimics a viral infection, was used. Poly(I:C) was applied to interferon receptor-deficient (IFNAR-deficient) mice and genetically unmodified control mice.

In IFNAR-deficient mice, the treatment with poly(I:C) induced a severe acute liver damage with necrosis, while the control animals were protected. Similarly to human liver inflammations, serum levels of the enzyme alanine aminotransferase also increased upon poly(I:C) treatment of IFNAR-deficient mice, while those of the control mice did not.

In collaboration with Professor Christian Bogdan, Institute of Clinical Microbiology, Immunology, and Hygiene of the University Hospital of Erlangen, the team of PEI researchers identified certain suppressor cells ("myeloid derived suppressor cells", MDSC) as mediators of protection: Upon type I interferon expression, these cells infiltrate the liver, where they convey the protective effect. The team achieved this by switching off the interferon receptor on individual cell types and studying specific surface markers.

Dr Waibler and co-workers were able to show that these suppressor cells influence the balance between the pro- inflammatory cytokine interleukin-1beta (IL-1beta) and its naturally occurring inhibitor, anti-inflammatory interleukin-1 receptor antagonist (IL-1RA) in the liver: For IFNAR-deficient mice, there was a drastic shift toward inflammatory IL-1beta upon poly(I:C) treatment, while for the control mice, the shift occurred in the direction of the anti-inflammatory IL-1RA.

The fact that IL-1beta and IL-1RA indeed induced the inflammatory or protective effects, respectively, in the liver could be proved by Dr Waibler and co-workers by administrating IL-1RA to IFNAR-deficient mice, which prevented the liver damage induced by poly(I:C). Although interferon could not mediate the protective effect here, due to the missing interferon receptor, the downstream effects, normally mediated by interferon, was restored by the administration of IL-1RA. Likewise, liver functions improved in IFNAR-deficient mice if the inflammatory cytokine IL-1beta was neutralized by adding an anti-IL-1beta antibody.

"Interferons have extremely versatile effects by regulating up to 300 genes, thus bringing about a great variety of effects. Only a minor part of them is responsible for this effect on the liver. Maybe an organ-specific therapy would be possible here", explained Dr Waibler with regard to a potential clinical use of these results. Biotechnologically engineered IL-1RA is used in the treatment of rheumatoid arthritis. In addition, there is a genetically engineered monoclonal antibody directed against IL-1beta, which is used in patients with a particular genetic defect.

The PEI researchers also have an explanation for the fact that the suppressor cells in the control mice infiltrate the liver: Based on experimental results, they assume that interferons switch on a particular chemokine in the liver, which attracts the suppressor cells (MDSC).

"Many immunological processes are not fully understood, yet. With our fundamental research, we contribute to developing approaches to therapies that are effective but at the same time cause as few adverse effects as possible", emphasised Professor Cichutek, president of the Paul-Ehrlich-Institut.

Original publication

DOI:10.1002/hep.26915; unedited version

Conrad E, Resch TK, Gogesch P, Kalinke U, Bechmann I, Bogdan C, Waibler Z (2013): Protection against RNA-induced liver damage by myeloid cells requires type I IFN and IL-1 receptor antagonist. Hepatology [Epub ahead of print].

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:
Abstract of the publication (accepted, unedited)

Press Release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>