Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protecting Privacy in DNA Research

25.08.2009
In the last few years, genome association studies have led to breakthrough medical discoveries.

However, due to privacy concerns that the identity of individuals could be determined through DNA data, health institutes in the US and abroad removed public access to the genetic data coming from these association studies.

Such association studies have been shown to shed light on diseases such as cancer or Alzheimer’s disease, and sharing the raw data from these studies with other scientists can aid tremendously with further discoveries. For this reason, Dr. Eran Halperin of the International Computer Science Institute (ICSI) and Tel Aviv University, and colleagues at the University of California, Berkeley have developed “a mathematical formula and a software solution that ensures that malicious eyes will have very low chances to identify individuals in any study,” says Dr. Halperin.

The team found a mathematical formula to determine which SNPs -- small molecules of DNA that differ from individual to individual in the human population -- can be publicly accessed without compromising information about the participation of any individual in the study. Using software designed with this formula, NIH and other institutes can distribute important research data and make it available to scientists without compromising anyone’s privacy.

“We’ve been able to determine how much of the DNA information one can reveal, without compromising a person’s privacy,” says Halperin. “This means the substantial effort invested in collecting this data will not have been in vain. Making this data publicly available again could speed up research and allow people to make new discoveries, more quickly.”

Genome association studies compare data from many individuals to identify specific positions in the genome that may be associated with an increased risk of disease, such as cancer. For instance, Dr. Halperin was recently involved in a study that found a link between a specific genetic mutation and risk of a type of non-Hodgkin’s Lymphoma. By allowing access to genetic information from such studies to the scientific community, other scientists can leverage these studies to find more connections between genetics and diseases.

The authors of the study plan to provide access to their software to NIH, and hope that scientists will use it, thereby providing public access to their now secure collected data.

A complete list of authors:
Sriram Sankararaman and Michael Jordan of UC Berkeley
Guillaume Obozinski from Willow, a joint research team between INRIA Rocquencourt, École Normale Supérieure de Paris and Centre National de la Recherche Scientifique. (Formerly at UC Berkeley)

Eran Halperin of ICSI and Tel Aviv University

The International Computer Science Institute is a non-profit research institute located in Berkeley, California. For over 20 years, ICSI has provided a collaborative environment where prominent computer science researchers from all over the world pursue cutting edge research on a variety of computer science topics.

Leah Hitchcock | Newswise Science News
Further information:
http://www.icsi.berkeley.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>