Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project Fruit Fly: What Accounts for Insect Taste?

27.04.2010
A Johns Hopkins team has identified a protein in sensory cells on the “tongues” of fruit flies that allows them to detect a noxious chemical and, ultimately, influences their decision about what to eat and what to avoid.

A report on the work, appearing April 19 in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS), raises the possibility that the protein — TRPA1 — is a new molecular target for controlling insect pests.

“We’re interested in how TRPA1 and a whole family of so-called TRP channels affect not just the senses, like taste, but also behavior,” says Craig Montell, Ph.D., a professor of biological chemistry and member of the Center for Sensory Biology in Johns Hopkins’ Institute for Basic Biomedical Sciences.

Montell notes that when his team knocked out the TRPA1 sensor, the behavior change — an alteration in food preference — was stark. “This is the first TRP channel in insects that responds to a naturally occurring plant chemical known as an antifeedant, so now we have a target for finding more effective chemicals to protect plants from destruction by insect pests.”

Montell discovered TRP (pronounced “trip”) channels in 1989 in flies and, a handful of years later, in humans, noting their abundance on sensory cells that communicate with the outside world. The job of these pore-like proteins — activated by a bright light, a chilly breeze or a hot chili pepper — is to excite cells to signal each other and ultimately alert the brain by controlling the flux of atoms of calcium and sodium that carry electrical charges.

Montell’s lab and others have tallied 28 TRP channels in mammals and 13 in flies, improving understanding about how animals detect a broad range of sensory stimuli, including the most subtle changes in temperature.

“We already knew that TRP channels have these broad sensory roles, having previously discovered that the insect TRPA1 had a role in helping flies to detect small differences in sub-optimal temperatures within their comfort range,” Montell says. “We wondered if it had any other sensory roles, so we went looking.”

First, the team genetically altered a normal TRPA1 gene. This experiment let them show that the protein was made in the fly’s major taste organ (called the labellum) and trace its manufacture to a subset of sensory cells that respond to noxious chemicals. Separate taste cells in mammals are also known to respond to either noxious or appealing chemicals in foods.

The researchers then conducted a series of behavioral tests comparing the feeding of wild type flies to those of mutants in which the TRPA1 gene was knocked out — unable to manufacture the protein.

The team placed 50 to 100 flies that had been purposely starved for a day in a covered plate with 72 wells full of two concentrations of sugar water. The wells containing the high concentration of sugar water were laced with different bitter compounds, including quinine, caffeine, strychnine and aristolochic acid. This bitter/sugar water was distinguished with blue food coloring as opposed to the pure sugar water, colored red. A wild type fly normally would consume the more sugary water because, like humans, it has a “sweet tooth.” However, if the more sugary water is laced with an aversive flavor, they choose the less sugary water.

After allowing the hungry wild type and mutant flies to feed from the wells, the team froze and then counted the insects, separating them based on belly color: red, blue or purple. Surprisingly, most of the mutants avoided all but one of the bitter compounds — aristolochic acid, a naturally occurring chemical produced by plants to prevent themselves from being eaten by insects. The majority of the wild type were red, the appropriate color for having chosen the less sugary water; and the mutants mostly were blue, the color associated with the high concentration of sugar laced with aristolochic acid, because they couldn’t taste the noxious chemical.

“To our surprise, it was looking at first like TRPA1 didn’t have a role in responding to anything,” Montell said. “The aristolochic acid was literally the last compound we tried. I certainly wasn’t expecting that the TRPA1 would be so specific in its response.”

The team followed up with electrophysiology tests on both wild type flies and those lacking the TRPA1 gene. By attaching electrodes to the tiny taste hairs on the labellum, the scientists were able to measure the taste-induced spikes of electrical activity resulting from neurons responding to the noxious chemicals. TRPA1 was required for aristolochic acid-induced activity by neurons, meaning it’s essential for aristolochic acid avoidance.

TRP channels also play important roles in taste in mammals, but the requirement is very different, Montell says. While one mammalian TRP channel is required for tasting all sugars and bitter chemicals, no single insect TRP has such a broad role.

“It’s important to make this discovery in insects, not only because it’s interesting to trace the similarities and differences through millions of years of evolution, but also because of the possible practical applications” Montell says. “By targeting this TRP channel, we might be able to prevent insects from causing crop damage.”

Authors of the paper, in addition to Montell, are Sang Hoon Kim, Youngseok Lee, Bradley Akitake, Owen M. Woodward, and William B. Guggino, all of Johns Hopkins.

This research was supported by a grant from the National Institute on Deafness and Other Communication Disorders.

On the Web:
Craig Montell lab: http://neuroscience.jhu.edu/CraigMontell.php
PNAS: http://www.pnas.org

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu
http://www.pnas.org/

Further reports about: Accounts Biomedical Science Hopkins Johns Montell Science TV TASTE TRP TRPA1 fresh fruit insect insect pests

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>