Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Progress of arachidonic acid biosynthesis in microorganisms

Single cell oils (SCO), produced by and extracted from some single-celled microorganisms, are featured with high levels of the major very long chain polyunsaturated fatty acids (PUFA).
SCO are essential for health and potential sources of bio-diesel. There has been a long history of interest in the exploitation of microorganisms as oil and fat providers, due to the continuing diminution of arable land and climate change making animal and plant sourced oils even more limited. However, such endeavor has been progressing hardly, mostly because the efficiencies of oil synthesis by microorganisms are normally too low to be applied in industry at a reasonable price.

The article "Ion-beam-mutation breeding of an arachidonic acid biosynthesis microorganism and its industrial fermentation control" , by Z. L. Yu and Q. Huang et al., from the Hefei Institutes of Physical Science, Chinese Academy of Sciences, published in Chinese Science Bulletin (2012) 57: 883, has started to shed light on this issue. Cells of the oil-producing fungus Mortierella alpine were genetically modified by their patented technology, known as ion beam biotechnology, and screened using procedures tailored for oil yield. They obtained one strain: 50% of its biomass was fatty acids, of which 70% is arachidonic acid.

In their report "Fats and oils in human nutrition" released in 1993, the FAO and WHO suggested that diet for infants, especially preterm infants and infants with insufficient breast-feeding, should be supplemented with adequate amounts of fatty acids with composition corresponding to fatty acids contained in breast-milk. AA and docosahexaenoic acid (DHA) are particularly important for brain development but only found in breast milk naturally. Therefore it has become a long-term focus developing AA-rich oil in microorganisms.

Over two decades ago, the authors started the project by implanting energetic ions, generated by an ion source and accelerated to certain electrical potentials, into cells of Mortierella alpine, the fungus naturally synthesizing PUFA. Implanted ions resulted in genetic mutations. They firstly screened for mutant cells producing high levels of total fatty acids, presumably resulting from mutations in genes controlling palmitic acid synthesis from acetyl CoA. In the second stage, established mutant strains from the first stage were mutated again by ion implantation and strains accumulating AA, among various kinds of fatty acids, were screened for. Such two-stage protocol was repeated until a genetically stable, AA-rich strain was obtained. Its AA yield was nearly 20 times of that of the original non-mutated strain, showing prospect of industrial application. The strain was transferred to manufacturer and a production line was thereafter constructed in Wuhan, by which fermentation control study was initiated.

Fermentation control normally involves optimization of culture media and growth condition, to reach a comprehensive and balanced nutrition supply for cell metabolism. To be used as diet supplement for infants, safety is the most critical issue therefore a simple media formulation guaranteeing minimum substrate residue was desired. Researchers tested the possibility of recycling the fungi residue after oil extraction into culture media. The "waste utilization" simplified culture media from 7 ingredients to just 2, glucose and the fungi residue, therefore reduced manufacturing costs. Data from 11 batches of fermentation in 200 m3 reactor with the minimum substrates showed that, the new strain reached an average biomass of 35.8 g/L (dry fungi cells/fermentation liquid), oil and AA contents of 18.4 g/L and 8.97 g/L respectively. This result attracted attention from more researchers.

Z. Cohen and C. Ratledge commented in their compilation "Single Cell Oils" that, "Alternative microbial sources of AA are also being sought. Already it is known there is a process for AA production in China, operated by Wuhan Alking Bioengineering Co. Ltd, using a new strain of Mortierella alpine. This process appears to operate at the 50-100 ton level."

Fatty acids from most microbial sourced oils have a similar composition with plant oils. Developing microbial oils is a promising direction for both bio-diesel industry and biological economy. The work and its related technologies reported here, such as cell modification by ion beams and recycling of fungi residue as substrate, not only developed new AA resource, but also offered new thoughts and paved a novel route for future exploration of microbial oil industry. This study has been supported by the 8th, the 9th and the 10th Five-Year National Science and Technology Plans (Projects 85-722-22-01˜a2001BA302B-04).

YU ZengLiang, WANG Ji, YUAN ChengLing, et al. Ion-beam-mutation breeding of an arachidonic acid biosynthesismicroorganism and its industrial fermentation control (in Chinese). Chinese Sci Bull(Chinese Ver), 2012, 11: 883-890.

Feng Huiyun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>