Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress of arachidonic acid biosynthesis in microorganisms

29.05.2012
Single cell oils (SCO), produced by and extracted from some single-celled microorganisms, are featured with high levels of the major very long chain polyunsaturated fatty acids (PUFA).
SCO are essential for health and potential sources of bio-diesel. There has been a long history of interest in the exploitation of microorganisms as oil and fat providers, due to the continuing diminution of arable land and climate change making animal and plant sourced oils even more limited. However, such endeavor has been progressing hardly, mostly because the efficiencies of oil synthesis by microorganisms are normally too low to be applied in industry at a reasonable price.

The article "Ion-beam-mutation breeding of an arachidonic acid biosynthesis microorganism and its industrial fermentation control" , by Z. L. Yu and Q. Huang et al., from the Hefei Institutes of Physical Science, Chinese Academy of Sciences, published in Chinese Science Bulletin (2012) 57: 883, has started to shed light on this issue. Cells of the oil-producing fungus Mortierella alpine were genetically modified by their patented technology, known as ion beam biotechnology, and screened using procedures tailored for oil yield. They obtained one strain: 50% of its biomass was fatty acids, of which 70% is arachidonic acid.

In their report "Fats and oils in human nutrition" released in 1993, the FAO and WHO suggested that diet for infants, especially preterm infants and infants with insufficient breast-feeding, should be supplemented with adequate amounts of fatty acids with composition corresponding to fatty acids contained in breast-milk. AA and docosahexaenoic acid (DHA) are particularly important for brain development but only found in breast milk naturally. Therefore it has become a long-term focus developing AA-rich oil in microorganisms.

Over two decades ago, the authors started the project by implanting energetic ions, generated by an ion source and accelerated to certain electrical potentials, into cells of Mortierella alpine, the fungus naturally synthesizing PUFA. Implanted ions resulted in genetic mutations. They firstly screened for mutant cells producing high levels of total fatty acids, presumably resulting from mutations in genes controlling palmitic acid synthesis from acetyl CoA. In the second stage, established mutant strains from the first stage were mutated again by ion implantation and strains accumulating AA, among various kinds of fatty acids, were screened for. Such two-stage protocol was repeated until a genetically stable, AA-rich strain was obtained. Its AA yield was nearly 20 times of that of the original non-mutated strain, showing prospect of industrial application. The strain was transferred to manufacturer and a production line was thereafter constructed in Wuhan, by which fermentation control study was initiated.

Fermentation control normally involves optimization of culture media and growth condition, to reach a comprehensive and balanced nutrition supply for cell metabolism. To be used as diet supplement for infants, safety is the most critical issue therefore a simple media formulation guaranteeing minimum substrate residue was desired. Researchers tested the possibility of recycling the fungi residue after oil extraction into culture media. The "waste utilization" simplified culture media from 7 ingredients to just 2, glucose and the fungi residue, therefore reduced manufacturing costs. Data from 11 batches of fermentation in 200 m3 reactor with the minimum substrates showed that, the new strain reached an average biomass of 35.8 g/L (dry fungi cells/fermentation liquid), oil and AA contents of 18.4 g/L and 8.97 g/L respectively. This result attracted attention from more researchers.

Z. Cohen and C. Ratledge commented in their compilation "Single Cell Oils" that, "Alternative microbial sources of AA are also being sought. Already it is known there is a process for AA production in China, operated by Wuhan Alking Bioengineering Co. Ltd, using a new strain of Mortierella alpine. This process appears to operate at the 50-100 ton level."

Fatty acids from most microbial sourced oils have a similar composition with plant oils. Developing microbial oils is a promising direction for both bio-diesel industry and biological economy. The work and its related technologies reported here, such as cell modification by ion beams and recycling of fungi residue as substrate, not only developed new AA resource, but also offered new thoughts and paved a novel route for future exploration of microbial oil industry. This study has been supported by the 8th, the 9th and the 10th Five-Year National Science and Technology Plans (Projects 85-722-22-01˜a2001BA302B-04).

YU ZengLiang, WANG Ji, YUAN ChengLing, et al. Ion-beam-mutation breeding of an arachidonic acid biosynthesismicroorganism and its industrial fermentation control (in Chinese). Chinese Sci Bull(Chinese Ver), 2012, 11: 883-890.

Feng Huiyun | EurekAlert!
Further information:
http://www.ipp.ac.cn

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>