Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress Toward a Biological Fuel Cell?

30.12.2008
Metal-reducing bacteria and semiconducting nanominerals aggregate to form electrically conducting networks

Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) coated with a bacterial film. The fuel consists of a substrate that the bacteria can break down.

The electrons released in this process must be transferred to the anode in order to be drawn off as current. But how can the electrons be efficiently conducted from the microbial metabolism that occurs inside a cell to the anode? Discoveries made by Japanese researchers regarding the electron-transfer mechanism of Shewanella loihica PV-4 suggest an intriguing approach. As reported in the journal Angewandte Chemie, in the presence of iron(III) oxide nanoparticles, these metal-reducing bacteria aggregate into an electrically conducting network.

To meet its energy requirements, our bodies metabolize energy-rich substances. A critical step in this process is the transfer of electrons to oxygen, which enters our bodies when we breathe. Instead of breathing, metal-reducing bacteria that live in subterranean sediments transfer electrons to the iron oxide minerals on which they dwell as the last step of their metabolism. In this process, trivalent iron ions are reduced to divalent ions.

A team led by Kazuhito Hashimoto has investigated how this transfer is carried out in Shewanella loihica. They added the cells to a solution containing very finely divided nanoscopic iron(III) oxide particles and poured the solution into a chamber containing electrodes. A layer of bacteria and iron oxide particles was rapidly deposited onto the indium tin oxide electrodes at the bottom of the chamber. When the cells were “fed” lactate, a current was detected. Electrons from the metabolism of the lactate are thus transferred from the bacteria to the electrode.

Scanning electron microscope images show a thick layer of cells and nanoparticles on the electrode; the surfaces of the cells are completely coated with iron oxide particles. The researchers were able to show that the semiconducting properties of the iron oxide nanoparticles, which are linked to each other by the cells, contribute to the surprisingly high current. The cells act as an electrical connection between the individual iron oxide particles. Cytochromes, enzymes in the outer cell membrane of these bacteria, transfer electrons between the cells and the iron oxide particles without having to overcome much of an energy barrier. The result is a conducting network that even allows cells located far from the electrode to participate in the generation of current.

Author: Kazuhito Hashimoto, University of Tokyo (Japan), http://www.light.t.u-tokyo.ac.jp/english/contact-us.htm

Title: Self-Constructed Electrically Conductive Bacterial Networks

Angewandte Chemie International Edition 2009, 48, No. 3, 508–511, doi: 10.1002/anie.200804750

Kazuhito Hashimoto | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.light.t.u-tokyo.ac.jp/english/contact-us.htm

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>