Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progress Toward a Biological Fuel Cell?

30.12.2008
Metal-reducing bacteria and semiconducting nanominerals aggregate to form electrically conducting networks

Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) coated with a bacterial film. The fuel consists of a substrate that the bacteria can break down.

The electrons released in this process must be transferred to the anode in order to be drawn off as current. But how can the electrons be efficiently conducted from the microbial metabolism that occurs inside a cell to the anode? Discoveries made by Japanese researchers regarding the electron-transfer mechanism of Shewanella loihica PV-4 suggest an intriguing approach. As reported in the journal Angewandte Chemie, in the presence of iron(III) oxide nanoparticles, these metal-reducing bacteria aggregate into an electrically conducting network.

To meet its energy requirements, our bodies metabolize energy-rich substances. A critical step in this process is the transfer of electrons to oxygen, which enters our bodies when we breathe. Instead of breathing, metal-reducing bacteria that live in subterranean sediments transfer electrons to the iron oxide minerals on which they dwell as the last step of their metabolism. In this process, trivalent iron ions are reduced to divalent ions.

A team led by Kazuhito Hashimoto has investigated how this transfer is carried out in Shewanella loihica. They added the cells to a solution containing very finely divided nanoscopic iron(III) oxide particles and poured the solution into a chamber containing electrodes. A layer of bacteria and iron oxide particles was rapidly deposited onto the indium tin oxide electrodes at the bottom of the chamber. When the cells were “fed” lactate, a current was detected. Electrons from the metabolism of the lactate are thus transferred from the bacteria to the electrode.

Scanning electron microscope images show a thick layer of cells and nanoparticles on the electrode; the surfaces of the cells are completely coated with iron oxide particles. The researchers were able to show that the semiconducting properties of the iron oxide nanoparticles, which are linked to each other by the cells, contribute to the surprisingly high current. The cells act as an electrical connection between the individual iron oxide particles. Cytochromes, enzymes in the outer cell membrane of these bacteria, transfer electrons between the cells and the iron oxide particles without having to overcome much of an energy barrier. The result is a conducting network that even allows cells located far from the electrode to participate in the generation of current.

Author: Kazuhito Hashimoto, University of Tokyo (Japan), http://www.light.t.u-tokyo.ac.jp/english/contact-us.htm

Title: Self-Constructed Electrically Conductive Bacterial Networks

Angewandte Chemie International Edition 2009, 48, No. 3, 508–511, doi: 10.1002/anie.200804750

Kazuhito Hashimoto | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.light.t.u-tokyo.ac.jp/english/contact-us.htm

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>