Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prion discovery gives clue to control of mass gene expression

The discovery in common brewer's yeast of a new, infectious, misfolded protein -- or prion -- by University of Illinois at Chicago molecular biologists raises new questions about the roles played by these curious molecules, often associated with degenerative brain diseases like "mad cow" and its human counterpart, Creutzfeldt-Jakob.

Susan Liebman, distinguished university professor of biological sciences, and postdoctoral research associate Basant Patel propagated the new prion from a normal yeast protein called Cyc8. They note that like the Cyc8 protein, the prion of Cyc8 can affect the expression of a large number of yeast genes.

"We know this prion turns on the expression of genes but we don't know if the prion forms naturally," said Liebman. "If it were to form, it would have this effect. But whether it happens out in the wild all the time, we don't know."

Liebman and her coworkers discovered that Cyc8 was a prion candidate using a genetic screen that looks for proteins that when overproduced can spur formation of new prions. To date, scientists have discovered only seven prions, six of which are only in fungi, including yeast. The latest two discovered, Cyc8 and another, identified as Swi1, came from genes screened in Liebman's lab. The Cyc8 prion was characterized by the UIC scientists, while the Swi1 prion was found by Northwestern University researchers.

The normal Cyc8 protein shuts down expression of more than 300 genes in yeast, says Patel, including some genes that are involved in stress tolerance.

"Once Cyc8 is converted to a prion, it loses that function," he said. "This might provide some advantages under stressful conditions. Since the protein represses more than 300 genes, it's possible the prion form can activate the genes on a mass level." If an organism wanted to activate all the genes in a cell that the protein repressed, he said, "converting the protein into a prion would be an easy way to do it."

Patel and others in Liebman's lab are testing the protein to see if this molecular mechanism does in fact take place naturally. They're also studying the interaction of prions to determine if pre-existing prions facilitate or destabilize new prions.

Whether the actions of prions in yeast are analogous to mammalian models is not yet fully known, but the possibility certainly is on the minds of Liebman and her associates.

"There could be prions in humans that are not causing disease but have important effects on the cell or organism," said Liebman. "They may even be related to the ones we find in yeast. The more prions we learn about and study, the more information we learn from them -- how they arrive, what proteins are needed to maintain them. As we study other models, we have a better idea."

Paul Francuch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>