Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primates too can move in unison

28.01.2013
Japanese researchers show for the first time that primates modify their body movements to be in tune with others, just like humans do.

Humans unconsciously modify their movements to be in synchrony with their peers. For example, we adapt our pace to walk in step or clap in unison at the end of a concert. This phenomenon is thought to reflect bonding and facilitate human interaction. Researchers from the RIKEN Brain Science Institute report today that pairs of macaque monkeys also spontaneously coordinate their movements to reach synchrony.

This research opens the door to much-needed neurophysiological studies of spontaneous synchronization in monkeys, which could shed light into human behavioral dysfunctions such as those observed in patients with autism spectrum disorders, echopraxia and echolalia – where patients uncontrollably imitate others.

In the research, published today in the journal Scientific Reports, the team led by Naotaka Fujii developed an experimental set-up to test whether pairs of Japanese macaque monkeys synchronize a simple push-button movement.

Before the experiment, the monkeys were trained to push a button with one hand. In a first experiment the monkeys were paired and placed facing each other and the timing of their push-button movements was recorded. The same experiment was repeated but this time each monkey was shown videos of another monkey pushing a button at varying speeds. And in a last experiment the macaques were not allowed to either see or hear their video-partner.

The results show that the monkeys modified their movements – increased or decreased the speed of their push-button movement - to be in synchrony with their partner, both when the partner was real and on video. The speed of the button pressing movement changed to be in harmonic or sub-harmonic synchrony with the partners' speed. However, different pairs of monkeys synchronized differently and reached different speeds, and the monkeys synchronized their movements the most when they could both see and hear their partner.

The researchers note that this behavior cannot have been learnt by the monkeys during the experiment, as previous research has shown that it is extremely difficult for monkeys to learn intentional synchronization.

They add: "The reasons why the monkeys showed behavioral synchronization are not clear. It may be a vital aspect of other socially adaptive behavior, important for survival in the wild."

The study was partly supported by Grant-in-Aid for Scientific Research on Innovative Areas 'Neural creativity for communication' (22120522 and 24120720) of MEXT, Japan.

For more information please contact:

Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
email: pr@riken.jp
Reference
Yasuo Nagasaka, Zenas C. Chao, Naomi Hasegawa, Tomonori Notoya, and Naotaka Fujii "Spontaneous synchronization of arm motion between Japanese macaques." Scientific Reports, 2013 DOI: 10.1038/srep01151.

About RIKEN:

RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: www.riken.jp

Find us on Twitter at @rikenresearch

About the RIKEN Brain Science Institute:

The RIKEN Brain Science Institute (BSI) was established to answer a growing need in society for cutting-edge brain science research and today enjoys an international reputation as an innovative center for brain science. Research at BSI integrates a wide range of disciplines including medicine, biology, physics, technology, information science, mathematical science, and psychology. BSI's research objectives cover individual organisms, behavior, microscopic molecular structures of the brain, neurons, neurocircuits, cognition, memory, learning, language acquisition, and robotics.

Juliette Savin | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>